News and information on the brain, wellness and health that promotes a fuller and happier life.

Banner Image
Banner Image
Vertex Image
Banner Image

Search

Icon

Category

User Type

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
NeuroTrackerX Team
February 23, 2016
The Hot Corner - The Toughest Position in Baseball?

The Hot Corner, also known as the third base, can be the toughest position in baseball. Players have to make split-second decisions and it can all depend on reaction time and mental sharpness.

When a ball is hit hard to left-field and the runner takes off barreling to first at a rate of 26 feet per second, the 3rd baseman has – at most – about four seconds to get the ball from 3rd to 1st. With such limited margin of error and need for automated reflexes, third base is arguably the toughest position to play in baseball; where plays boil down to tiny fractions of a second that will either make or break the play. It is the intensity of this position that necessitates the need for quick reactions and superior reflexes that gives it the nickname of the “hot corner.” To put the speed at which basemen like Evan Longoria, David Wright and Josh Donaldson must formulate and execute plays into perspective, consider that it takes on average a third baseman when fielding about .11 of a second to transfer the ball from his glove to his hand, that is about the same amount of time that it takes a helicopter blade to rotate once while traveling at 100 mph. With speeds of that intensity, it becomes imperative that the 3rd basemen react in a way that will allow him to get the ball to 1st in time, which sometimes means making split-second decisions to cut this transfer out and bare hand the ball instead.

Once the ball is in play, fielders have mere seconds to assess the situation, anticipate what will happen next, formulate a plan of action and execute. This does not come easy and most of the time there is little time to think. Instead, it comes down to pure reaction. For this reason, a player in the hot corner must have the mental capacity to evaluate and execute in fractions of seconds; and he must harbour beyond the sharpest of motor skills that will allow him to act defensively on impulse.

The Importance of the Mental Game

Contrary to common belief, playing a good game of ball is about much more than athletic ability – it too comes down to mental training. In professional baseball, a fastball will reach home plate in about .44 of a second and a line drive can travel 90 feet in just .58 of a second. That means that the total time that elapses from the time that the ball leaves the pitcher's hand until it reaches third base, is about 1 second. With the game unfolding this quickly, it leaves little time for the third baseman to think and react; he therefore must sustain the capability to make prompt decisions.  He must also rely on the mental ability that he has built up, to take control and to make a play happen.

The most elite of third basemen, know the importance of cognitive ability. Having played the game and been under the immense pressure that comes along with manning one of the most difficult positions in baseball, they see the value in keeping the mind sharp. Sports vision training is essential to maintaining the cognitive function necessary to field the ball, win rundowns, to make accurate throws in difficult situations and to make game winning plays – fast.

Perceptual-Cognitive Training

Part of baseball includes long periods of physical inactivity, during which time players must remain mentally stimulated in order to be prepared for the brief bursts of intense action. Remaining cognitively sharp can be the key to making winning plays – especially in the case of the hot corner. Just like strength conditioning and training could improve the physical endurance of players, perceptual-cognitive training could also improve the mental endurance and cognitive stamina of key players on the field. Perceptual-cognitive training could be the secret to enhancing athletic performance by way of improving focus and attention on the field; which ultimately allows valuable players to maintain situational awareness essential to retaining their competitive advantage throughout the duration of the game.

Source

No items found.
NeuroTrackerX Team
February 19, 2016
(FR) 10 infos que vous ignorez sur votre cerveau

Avez-vous deja pris le temps de penser a votre cerveau? De quoi est-il fait? Comment il fonctionne et s'il lui arrive de cesser de fonctionner?

Avez-vous déjà pris le temps de penser à votre cerveau? De quoi est-il fait? Comment il fonctionne et s’il lui arrive de cesser de fonctionner? Le cerveau est un organe très complexe qui agit comme commandant du système nerveux central du corps humain. Il contient approximativement 86 milliards de neurones (cellules nerveuses) et des milliards d’axones et de dendrites (fibres nerveuses) qui se connectent à encore plus de synapses (connexions). Ces dernières font à leur tour fonctionner le corps. Cela signifie que le cerveau humain a plus de connexions qu’il y a d’étoiles dans l’univers! Ces connexions aident le cerveau a recevoir les informations des organes sensoriels pour les traduire et les transformer par la suite en messages pour les muscles du corps.

Il y a plusieurs informations intéressantes sur le cerveau humain. Par exemple, le cerveau humain est le plus gros, en proportion au corps, de tous les vertébrés sur la planète. Ou que quand il est réveillé, le cerveau produit assez d’énergie pour alimenter une ampoule de 10-23 watts. Il y a simplement trop d’anecdotes fascinantes sur le cerveau pour toutes les nommer, mais voici une petite compilation de 10 d’entre elles qui saura vous étonner.

Le cerveau humain

1- La taille importe peu: le cerveau moyen pèse un gros 3,3 livres. Contrairement aux croyances, sa taille a peu d’importance pour déterminer l’intelligence. En fait, Albert Einstein avait un cerveau plus léger que la moyenne, pesant juste 2,7 livres.

2- On ne peut pas se chatouiller soi-même: c’est impossible de se chatouiller soi-même à cause d’une fonction du cervelet, le responsable de nos mouvements. La fonction de cette partie du cerveau est capable de prédire les sensations et donc de bloquer nos réactions.

3- On a du gras de cerveau: le cerveau est l’organe le plus gras du corps humain. Il est constitué d’au moins 60 % de gras.

4- Bâiller réveille le cerveau: on bâille parce qu’on est fatigués ou qu’on veut aller dormir n’est-ce pas? C’est ce qu’on nous a appris depuis qu’on est petits. Or, la vraie utilité du bâillement est d’envoyer de l’oxygène au cerveau. Quand notre niveau d’oxygène est bas, on bâille instinctivement pour lui envoyer plus d’oxygène. Cela rafraichit le cerveau, ce qui le réveille. La raison pour laquelle nous bâillons quand on voit quelqu’un d’autre le faire est expliquée par le fait que nos « neurones miroir » fonctionnent. Ceux qui ne le font pas ont probablement des dommages dans cette région du cerveau et auront probablement des difficultés à communiquer et socialiser avec les autres.

5- Ce qu’on trouve dans un grain de sable: Un morceau de tissus cervical de la même grosseur qu’un grain de sable contient 1 milliard de synapses et 100 000 neurones qui communiquent entre eux.

6- Les enfants de 2 ans sont plus actifs que vous l’imaginez: Évidement, on associe les petits de cet âge a des boules d’énergie. Mais saviez-vous que leur cerveau consomme deux fois plus d’énergie que celui d’un adulte?

7- Avec l’âge : À partir de la naissance, le cerveau se développe de l’arrière vers l’avant. Avec l’âge avancé, le phénomène inverse se produit.

8- On ne ressent pas la douleur dans notre cerveau: le cerveau n’a pas de récepteurs de douleur. Cela signifie qu’on ne peut pas y ressentir de douleur. Le cerveau fonctionne en tandem avec moelle épinière, qui lui permet de détecter et traiter la douleur. Mais on ne peut pas le sentir si quelqu’un nous appuie directement sur le cerveau. C’est pour cette raison que les chirurgies du cerveau peuvent s’effectuer quand un patient est réveillé.

9- On utilise tout notre cerveau: une rumeur populaire veut qu’on utilise seulement 10 % de notre cerveau. C’est loin d’être vrai. Chaque partie du cerveau a son utilité spécifique.

10- Le cerveau humain est le seul objet sur cette planète qui possède la capacité de s’observer lui-même: pensez-y pour un moment.

Sources:

Lewis, T. (2015, March 26). “Human Brain: Facts and Anatomy.” Live Science (website). Récupéré de http://www.livescience.com/29365-human-brain.html. Lu le13 janvier 2016.

Lyle, T. “15 Things You Probably Did Not Know About Your Brain.” Lifehack (website). Récupéré de http://ww.lifehack.org/articles/lifestyle/15-things-you-probably-didnt-know-about-your-brain.html. Lu le13 janvier 2016.

Omes, S. (2007, July 7). “17 Things You Did Not Know About…Your Brain.” Discovery Magazine (website). Récupéré de  http://discovermagazine.com/2007/brain/if-i-only-had-a-brain. Lu le13 janvier 2016.

No items found.
NeuroTrackerX Team
February 18, 2016
Mind-Controlled Arm Moves Fingers Independently - New Age Prosthetics or Cyborg?

Biomedical engineers and physicians from Johns Hopkins have reported on their first successful efforts to wiggle fingers independently of each other and individually, by way of using a mind-controlled prosthetic arm. Is an advancement of this magnitude what we can expect of new age prosthesis or is it something right out of a sci-fi movie?

Biomedical engineers and physicians from Johns Hopkins have reported on their first successful efforts to wiggle fingers independently of each other and individually, by way of using a mind-controlled prosthetic arm. Is an advancement of this magnitude what we can expect of new age prosthesis or is it something right out of a sci-fi movie?

According to the Journal of Neural Engineering, this experiment represented the potential advancement in technologies that could be used to restore function of the hands to those individuals who have lost arms to disease or injury.

The Experiment  

The gentleman of whom this experiment was performed on was actually not missing his arm, or even his hand for that matter. But, he was specially outfitted with a scientific device that was created to take advantage of a unique brain-mapping procedure that essentially bypassed the control of his own hand and arms. He was selected for the experiment because he was already scheduled to undergo similar brain-mapping at The Johns Hopkins Hospital’s Epilepsy Monitoring Unit, in an effort to detect the origin of his recurring seizures.

Electrodes were surgically implanted into his brain for clinical purposes, which also happened to be useful in controlling a modular prosthesis – developed by the Johns Hopkins University Applied Physics Laboratory. Specific parts of the subject’s brain were tracked and mapped prior to then programming the prosthesis to move the fingers on their own.

The Relevance

Guy Hotson, a graduate student and lead author of this study says, “The Electrodes used to measure brain activity in this study gave us better resolution of a large region of cortex than anything we’ve used before and allowed for more precise spatial mapping in the brain.” He goes on to say, “This precision is what allowed us to separate the control of individual fingers.”

What is interesting about this study is that there was no pre-training the subject underwent in order to gain this shocking level of control. Furthermore, the entire experiment took less than two hours from start to finish to complete. The experiment marks the first time an individual has successfully used mind-controlled prosthesis and been able to immediately perform independent digit movements without having undergone extensive training.

Senior author Nathan Crone, M.D., professor of neurology at the Johns Hopkins University School of Medicine says, “This technology goes far beyond available prostheses, in which the artificial digits, or fingers, moved as a single unit to make a grabbing motion, like one used to grip a tennis ball.” Crone has made it a point to suggest that the application of this new technology, when used in conjunction with those individuals actually missing limbs, is still some years off. Additionally, the full development of the technology will be costly because it will require extensive mapping and computer programming.

Advancements in prosthetics of this nature, when finalized, could be life changing for the over 100,000 people living in the U.S. that have had and arm or hand amputated. All of which, would benefit immensely from such technology.

Sources:

Johns Hopkins Medicine. (2016, February 15). Mind-controlled prosthetic arm moves individual ‘fingers’. ScienceDaily. Retrieved February 17, 2016 from www.sciencedaily.com/releases/2016/02/160215154656.htm

No items found.
NeuroTrackerX Team
February 17, 2016
Sports Vision and Baseball

New revolutions in technology and research have opened the door for athletes to maximize their potential. Sports vision training, and in particular perceptual-cognitive training, might be the reason why you could be the next David Ortiz, Chris Davis or Bryce Harper.

Sports vision training can improve on-field performance for elite-level players. There is evidence that multiple object tracking and perceptual-cognitive training  can improve visual information processing speed, increase situational awareness and sharpen focus - all key mental skills that allow athletes to make better decisions and execute more effectively in the game.

Here are some of the ways multiple object tracking and perceptual-cognitive training could help baseball players:

Pitch Recognition – Batters have about 250 milliseconds to identify the type of pitch being thrown, predict its path into the strike zone and direct the bat to that location. The more efficient batters are in processing this rapid stream of visual information, the more quality at- bats they will have. Multiple object tracking and perceptual-cognitive training could increase baseball players' ability to identify key visual cues in the pitcher’s wind up and release. This could permit them to accurately predict where and when the pitch will cross the plate and determine whether to swing or not.

Effective Playmaking – Once the ball is in play runners and fielders have to rapidly assess the situation, anticipate what’s next, evaluate their options and execute, often in a split second. When the game is tight the pressure on these athletes can be enormous. Multiple object tracking and perceptual-cognitive training could enhance athletic performance by improving cognitive function, which in turn is a crucial element in making rapid decisions under pressure.

Mental Endurance – Baseball interposes long periods of inactivity with brief episodes of intense action. But the periods of inactivity are only physical. Mentally, the players on the field and at the plate must remain cognitively sharp and in the moment. Multiple object tracking and perceptual-cognitive training could increase cognitive stamina, much like strength and conditioning training increases physical stamina. Multiple object tracking and perceptual-cognitive training could also help improve attention and focus, so players can maintain situational awareness and retain their competitive edge throughout the entire game.

No items found.
NeuroTrackerX Team
February 15, 2016
Road to Success - Maxime Chevrier Success Story

For Maxime Chevrier, sports has been a part of his life for as long as he remembers. Having played ice hockey at the professional level and after obtaining a psychology degree from the Universite du Quebec a Trois-Rivieres (UQTR), he dedicated his career towards sports psychology and working with athletes to allow them to maximize their potential.

For Maxime Chevrier, sports has been a part of his life for as long as he remembers. Having played ice hockey at the professional level and after obtaining a psychology degree from the Université du Québec à Trois-Rivières (UQTR), he dedicated his career towards sports psychology and working with athletes to allow them to maximize their potential.

Maxime is now a recognized sports psychology consultant. He has worked with multiple high-profile professional and Olympic athletes. He has a particular emphasis on working with players to manage the high levels of stress they encounter and ensuring they perform at optimum levels under pressure. In addition, he works with athletes to establish concussion baselines and post-incident concussion testing. He shares with them techniques and rehabilitation exercises that help the athletes during their recovery.

Watch a brief video below to see how Maxime has been using NeuroTracker at his clinic. You can also visit his website www.SynapsePlus.ca for more information and to get started on your own path to improvement.

No items found.
NeuroTrackerX Team
February 12, 2016
(FR) 5 exercices pour se depasser avec NeuroTracker

Pour maximiser les benefices de votre entrainement NeuroTracker, ajoutez des exercices exigeants d'un point de vue cognitif afin d'amener votre cerveau a de nouveaux niveaux.

Pour maximiser les bénéfices de votre entrainement NeuroTracker, ajoutez des exercices exigeants d’un point de vue cognitif afin d’amener votre cerveau à de nouveaux niveaux. Notez toutefois qu’il faut avoir déjà effectué l’entrainement de base avant d’ajouter ces nouveaux défis. Si vous sautez des étapes, vous nuirez à votre progression plutôt que de l’améliorer. On vous recommande de suivre nos protocoles avec un entraineur NeuroTracker certifié.

Voici les 5 meilleurs exercices à essayer, par ordre de difficulté

5. Équilibre – Niveau de difficulté : 2 cerveaux sur 5            

2outof5

Effectuer une session NeuroTracker debout sur un ballon d’équilibre est un exercice modéré. Même si ça peut sembler difficile, c’est l’exercice supplémentaire le plus facile de notre Top 5. On espère que vous avez un bon sens de l’équilibre!

4. Corde à sauter – Niveau de difficulté : 2,5 cerveaux sur 5      

2.5outof5

Combiner l’entrainement NeuroTracker à un exercice physique, aussi appelé « double tâche », augmente le niveau de difficulté. Cela exigera de votre cerveau qu’il puisse à la fois répondre aux demandes d’un exercice physique, telles que le contrôle ou suivre un rythme, tout en se concentrant sur le NeuroTracker.

3. Lever de poids – Niveau de difficulté : 4 cerveaux sur 5  

4outof5

Lever des poids peut être épuisant. De plus, pour éviter de se blesser, il faut le faire en respectant la bonne technique. Juste ça, c’est un bon défi, alors imaginez en ajoutant le NeuroTracker! On l’admet, c’est très difficile. Mais pas impossible. Regarder comment le champion de Taekwondo Aaron Cook y arrive:

2. Mode reconnaissance tactique – Niveau de difficulté : 5 cerveaux sur 5

5outof5

Imaginez qu’on vous fait faire quelque chose qui demande toute votre attention mentale. Imaginez maintenant qu’on ajoute par-dessus un peu de NeuroTracker. Voilà à quoi ressemble le mode tactique de NeuroTracker! L’utilisateur doit pouvoir identifier des images très rapidement puis prendre des décisions. Le tout pendant que la session normale NeuroTracker continue de rouler. Bonne chance avec celui-là!

1. Mode reconnaissance tactique + double tâche – Niveau de difficulté : COMPLÈTEMENT FOU!

Réservé à l’élite de l’élite. Cet exercice va soumettre votre cerveau à une demande cognitive très importante. En plus de demander de réussir le mode tactique régulier, ce niveau vous met également au défi physiquement. Seuls quelques rares élus y arrivent. Peut-être serez-vous le prochain?

No items found.
NeuroTrackerX Team
February 11, 2016
A New Device Dedicated to Undoing the Effects of Paralysis

A new discovery might allow individuals with disabilities, including paralysis, to be able to use their exoskeletons more efficiently. This revolutionary device might allow disabled individuals to stand on their own two feet again.

It is official – scientists have now tested and confirmed the world’s first nominally-invasive brain interface machine, designed in an effort to control the exoskeleton with the very power of thought.

This brain machine interface involves a stent-based stentrode (or electrode), which is rooted in a blood vessel within the brain, that records the different types of neural activity that has previously been shown through clinical trials to move limbs by way of the exoskeleton. The device itself, about the size of a paper clip, is scheduled to be implanted in the first human being in a trial to take place at The Royal Melbourne Hospital in 2017. The participants of the trial are to be selected from the Austin health Victorian Spinal Cord Unit.

Why It Matters

The resulting recordings of this new brain device are proving that it is possible to record high-quality signals that are emitted from the human brain’s motor cortex – that is without need of open brain surgery. So, what does this mean for those individuals suffering with paralysis? Dr. Thomas Oxley, the principal author and Neurologist at The Royal Melbourne Hospital and Research Fellow at the Florey Institute of Neurosciences and Mental Health and the University of Melbourne, claims that this new device – the stentrode is revolutionary.

The development of this stentrode brought together leaders of medical research from The Royal Melbourne Hospital, a total of 39 academic scientists from 16 different departments to be exact. This device matters because it is the world’s first minimally invasive apparatus to be implanted within a blood vessel in the brain by way of an unpretentious one day procedure, which ultimately negates the need for ultra-high-risk brain surgery.

What the Docs Are Saying

Dr. Oxley said, “Our vision, through this device, is to return function and mobility to patients with complete paralysis by recording brain activity and converting the acquired signals into electrical commands, which in turn would lead to movement of the limbs through a mobility assist device like an exoskeleton. In essence, this is a bionic spinal cord.”

Professor Terry O’Brien, Head of Medicine at Departments of Medicine and Neurology, The Royal Melbourne Hospital and University of Melbourne, too, has much positive feedback to share with regards to this new development. He says, “To be able to create a device that can record brainwave activity over long periods of time, without damaging the brain is an amazing development in modern medicine.” He goes on to say, “It can also be potentially used in people with a range of diseases aside from spinal cord injury, including epilepsy, Parkinson’s and other neurological disorders.”

1 in 50 people are affected by stroke and spinal cord injuries – the leading cause of disability. A development of this magnitude has the potential to change the lives of so many human beings all over the world. This revelation could be groundbreaking, as this simple device might actually give disabled individuals suffering from paralysis the chance to stand on their own two feet again – it is truly remarkable.

Sources

University of Melbourne. (2016, February 8). “New device to get people with paralysis back on their feet: Scientists have tested the world's first minimally-invasive brain-machine interface, designed to control an exoskeleton with the power of thought.” ScienceDaily (website). Retrieved February 9, 2016 from www.sciencedaily.com/releases/2016/02/160208124241.htm

No items found.
NeuroTrackerX Team
February 10, 2016
(FR) Video : Les differents niveaux de l'entrainement NeuroTracker - Performance

L'ajout progressif d'exigences lors d'un programme continu NeuroTracker a demontre une amelioration de l'etendue de la courbe d'apprentissage cognitive et pourrait tre un element cle dans l'atteinte de niveaux de performance avances.

L’ajout progressif d’exigences lors d’un programme continu NeuroTracker a démontré une amélioration de l’étendue de la courbe d’apprentissage cognitive et pourrait être un élément clé dans l’atteinte de niveaux de performance avancés.

Chaque cas est différent et il est toujours recommandé d’effectuer les sessions avec l’aide d’un entraineur ou d’un spécialiste. Voici quelques exemples pouvant être effectués durant l’exercice de double tâche qui s’incorporent a un entrainement NeuroTracker.

Screen Shot 2015-12-10 at 9.38.21 PM

1. Assis

Ceci est le premier niveau de l’entrainement NeuroTracker et le plus basique. Ce niveau inclut aussi la phase de recensement de l’activité basale et celle de consolidation. Dans la phase de base, l’utilisateur effectue 3 sessions et son score représente son point de référence initial. En suivant le protocole d’entrainement et après avoir effectué quelques sessions, l’utilisateur ne devrait pas obtenir un score inférieur a son point de référence initial, sauf dans le cas où quelque chose affecte ses performances neurologiques. Par exemple, une personne qui n’a pas dormi, qui souffre d’un lendemain de veille ou d’une commotion cérébrale pourrait obtenir un score inférieur. Ceci étant dit, si jamais dans votre session 4 vous obtenez un score en dessous de votre niveau initial, il n’y a pas de raison de croire que cela va perdurer. Plus vous ferez de sessions, plus vous allez vous améliorer.

La phase de consolidation représente les 12 sessions suivantes. Pendant celle-ci, plusieurs des utilisateurs démontrent une progression rapide, même si on passe du mode Core à Dynamic ou autres.

2. Debout

Screen Shot 2015-12-10 at 9.40.13 PM


Le niveau NeuroTracker suivant incorpore des aptitudes très simples. Comme a chacun des niveaux où une nouvelle aptitude est intégrée, l’utilisateur voit sa vitesse minimale diminuer au début. Pendant ce niveau, l’utilisateur doit rester debout. En restant simplement dans cette position, le cerveau doit utiliser plus de ses capacités. Cela est dû au fait que le cerveau a une capacité maximale a traiter des informations. Chaque tache qu’on lui ajoute lui enlève de l’attention disponible pour autre chose.

3. Équilibre

Screen Shot 2015-12-10 at 9.40.24 PM

Le troisième niveau est l’équilibre. L’utilisateur doit se tenir debout sur un ballon d’équilibre ou une planche d’équilibre, effectuant ainsi deux tâches en sollicitant ses habiletés motrices. Cela ajoute un peu de mouvement, ce qui force le cerveau à ajuster rapidement ses angles de vue. Chaque fois que les yeux bougent, le cerveau doit retraiter l’information qu’il reçoit, ce qui lui enlève aussi des capacités mentales.

4. (Optionel) Flux optique

Screen Shot 2015-12-10 at 9.40.34 PM

Le Flux optique est un mode spécial de NeuroTracker qui ajoute de fortes sollicitations visuelles dans l’environnement de l’utilisateur pendant la session. Pendant le Flux optique, le mouvement constant d’aller-retour à l’écran stimule le processus de perception cognitive associé avec le mouvement d’un individu et son sens de l’équilibre lié à la vue. Cet exercice augmente la demande mentale et peut offrir un conditionnement utile lors de situations impliquant des mouvements rapides dans des situations complexes, comme dans une partie de hockey par exemple.

5. Tâche liée a un sport

Screen Shot 2015-12-10 at 9.37.38 PM

Dans ce niveau, on recommande à l’utilisateur d’ajouter une tache liée à un sport en particulier qui inclut un élément de contrôle plutôt que de mouvement. Pensez au maniement d’un bâton de hockey : vous restez relativement à la même place, mais cela demande des habiletés pour le contrôler qui sont très spécifiques. Habituellement on choisit un aspect essentiel à un sport, comme dribler pour le basket-ball ou le maniement de rondelle avec bâton pour le hockey.

6. Tâche liée à un sport – Avancé

Screen Shot 2015-12-10 at 9.38.07 PM

Le niveau suivant d’entrainement avec une tâche liée a un sport devrait inclure un mouvement. Comme dans le vidéo, l’utilisateur est constamment forcé d’ajuster son angle de vision, ce qui ajoute beaucoup à la complexité demandée a ses capacités cognitives. Non seulement il utilise ses capacités motrices d’une manière plus complexe qu’en restant debout ou en gardant son équilibre, il change aussi de position de façon extrême.

7. Entraînement en force

Screen Shot 2015-12-10 at 9.38.41 PM

Le 7e niveau NeuroTracker inclut un élément extrêmement physique. Il introduit un élément de fatigue extrême dans l’entrainement. L’utilisateur fatigué a plus de chances d’obtenir un score faible au NeuroTracker. Avec l’entraînement en force, la fatigue peut s’accélérer assez rapidement pour qu’on en constate les effets dans une seule session.

8. Mode Reconnaissance tactique

Screen Shot 2015-12-10 at 9.38.57 PM

Le saint Graal de l’entraînement NeuroTracker, le mode Reconnaissance tactique, est l’épreuve la plus exigeante mentalement. Pendant le mode tactique, l’utilisateur doit identifier et réagir a des éléments liés au sport très complexes. Par exemple, un quart-arrière au football s’entrainant au NeuroTracker fera l’entrainement de base tout en observant une image de formation défensive à l’écran. Le quart arrière doit ensuite identifier cette formation, la nommer à voix haute selon sa formation offensive, tout en continuant de suivre les cibles en mouvement. Le même principe s’applique aussi dans l’armée, où un soldat pourrait voir des images d’éléments qu’il devrait identifier comme menaçants ou non, toujours en suivant des cibles mouvantes.

Conclusion

Tous ces niveaux sont des suggestions de l’équipe NeuroTracker pour obtenir les meilleurs résultats possible. Cependant, comme nous l’indiquons au tout début, la ressource la plus importante que tous les utilisateurs devraient rechercher, c’est un spécialiste ou un entraineur qui comprend parfaitement leurs objectifs, incluant tous les aspects qui pourraient affecter leur performance. Comme en physiothérapie, il y a quelques exercices qu’une personne blessée peut effectuer. En même temps, idéalement, on doit consulter un physiothérapeute afin d’obtenir les meilleurs résultats.

No items found.
NeuroTrackerX Team
February 7, 2016
Why Do Superstars Shine at the Super Bowl?

The likes of Aaron Rodgers, Peyton Manning and Tom Brady, considered to be some of the best quarterbacks to play the game, have made history both in victory and in defeat. What makes them so great?

"The team that is the most focused and executes the best is the team that wins. That’s usually the team that can handle the pressure of the situation." - Michael Strahan

There is no bigger stage in the sporting world than the Super Bowl. Elite players are under an immense amount of pressure to perform in front of their families, fans, and with the world watching. The likes of Aaron Rodgers, Peyton Manning and Tom Brady, considered to be some of the best quarterbacks to play the game, have made history both in victory and in defeat.

On December 3rd, 2015, with no time left on the clock, Aaron Rodgers's Hail Mary pass found Richard Rodgers, sending the Packers home as winners in what would have been a devastating loss to the Detroit Lions. A few weeks later, with less than a minute remaining on the clock, Rodgers completed two consecutive Hail Mary passes to allow the Packers to tie the game and send it to overtime. The Packers eventually lost in OT. Both Rodgers and Brady have gone on to win Super Bowl championships and cement their legacy as franchise quarterbacks for their teams. Certainly, many factors could explain why the Patriots or the Packers were not successful in reaching the Super Bowl this year, but despite these losses, the resilience of players of such calibre and their ability to deliver clutch performance in pressure situations season after season is what makes them unique.

Recent evidence suggests that one predictive factor for sports performance levels for elite athletes is their perceptual-cognitive abilities (See research HERE).  It helps determine the ability of the athlete to conceptualize the situations on a high-level, which can be a crucial skill for a quarterback. Indeed, more evidence has since been discovered that professional athletes perform better at perceptual-cognitive tasks than amateur athletes and non-athlete university students (Read study HERE). The finding can be of great interest because it could open the door for the ability to accurately predict an athlete's potential in the future. We can then hypothesize based on these findings that elite players like Aaron Rodgers, Tom Brady and Peyton Manning would also have high levels of perceptual-cognitive abilities.

Another factor is the ability to perform under pressure. Pressure can be defined as a significant increase in the cognitive load faced by an athlete. Before and during the Super Bowl, the athlete has to be wary of all the societal pressures such as family requests, in addition to the professional pressures of performing well to win the game. Multiple object tracking is a method of training that can challenge the athlete's ability to multi-task similarly to what they face in their daily life before the game.

No items found.
NeuroTrackerX Team
February 4, 2016
(FR) Fonctions cognitives : la cle de l'amelioration de la performance des eleves

NeuroTracker n'est pas juste pour les athletes. Ses programmes ont ete utilises dans les ecoles pour ameliorer des aptitudes essentielles a l'apprentissage. Parmi celles-ci, on retrouve la memoire, la vitesse de traitement des informations et d'autres fonctions cognitives.

NeuroTracker n’est pas juste pour les athlètes. Ses programmes ont été utilisés dans les écoles pour améliorer des aptitudes essentielles à l’apprentissage. Parmi celles-ci, on retrouve la mémoire, la vitesse de traitement des informations et d’autres fonctions cognitives. (Consultez l’étude ici)

La plupart des problèmes auxquels font face les étudiants sont leur incapacité à se concentrer sur les tâches demandées. Ce problème s’intensifie quand de multiples stimuli audio et visuels les distraient. Après un entrainement avec NeuroTracker, les élèves peuvent habituellement développer leurs attentions sélective et divisée, nécessaires pour se concentrer sur ce qui est important et éviter les distractions.

Le fonctionnement de NeuroTracker

NeuroTracker séduit instantanément les étudiants, en partie à cause du jeu – c’est amusant! Il nécessite toutefois une grande concentration, ce qui captive le participant. Les étudiants doivent suivre un nombre précis de balles à l’écran, puis les identifier correctement après une période où elles bougent et se frappent. Ces mouvements et les constantes distractions apprennent au cerveau de l’étudiant à se concentrer sur ce qui est important tout en faisant abstraction des distractions. Les élèves y gagnent habituellement une augmentation de leur capacité à se concentrer et une hausse de la durée pendant laquelle ils arrivent à le faire.

L’attention divisée

L’attention divisée est la capacité à partager son attention sur plusieurs objets à la fois. Chaque objet sur lequel l’étudiant se concentre est traité par le cerveau séparément. Ils doivent pouvoir calculer le mouvement de chaque objet individuellement.

Entrainer son cerveau à partager l’attention permet de faire plusieurs choses à la fois et de mieux prioriser les demandes d’attention. C’est fréquent que dans une classe, ou dans d’autres situations de la vie courante, qu’un étudiant doive faire face à de multiples stimuli, qu’il doit traiter simultanément. Écouter un cours, lire une présentation et prendre des notes en même temps peut s’avérer difficile pour plusieurs élèves. Souvent, ils tentent de tout faire à la fois, sans arrive à se concentrer correctement sur aucunes des tâches. L’entrainement de l’attention divisée permet de mieux gérer les stimuli multiples et d’améliorer la performance pour effectuer chaque tâche.

L’attention sélective

S’entrainer avec NeuroTracker est une bonne façon de développer l’attention sélective des étudiants, essentielle pour filtrer les stimuli inutiles et pour se concentrer sur ce qui est important. Suivre de multiples objets dans un groupe et répéter l’exercice souvent, c’est comme aller au gym pour le filtre du cerveau. Il devient plus fort et c’est alors plus facile pour un étudiant de déterminer quelle est l’information essentielle tout en ne portant pas attention aux distractions.

Jetez un coup d’œil à l’étude « Enhancing Cognitive Function Using Perceptual-Cognitive Training » pour obtenir plus d’information sur l’apport du suivi d’images en 3D à l’amélioration des fonctions cognitives.

No items found.
NeuroTrackerX Team
February 4, 2016
Research Replicating the Folds in the Human Brain Could Unlock Mysterious Inner Workings

New research completed by Harvard's John A. Paulson School of Engineering and Applied Sciences has unlocked a brain fold replication model that may help scientists to understand how the inner workings of the brain function; which up until this point has remained a mystery.

New research completed by Harvard’s John A. Paulson School of Engineering and Applied Sciences has unlocked a brain fold replication model that may help scientists better understand the inner workings of the brain. Through 3D replication of the folds in the human brain, the research team showed that though there are multiple molecular processes that ultimately determine the cellular events, the actual cause of brain folds is essentially a mechanical instability that has been linked to buckling.

The Making of a Gel Brain

Researchers made a gel model, a three-dimensional replication of a smooth fetal brain by way of MRI imaging. The surface of the model was coated with a layer of elastomer gel, which acted as an analog of the cortex. In order to mimic the cortical expansion, the model brain was immersed into a solvent that absorbed into the outermost layer, leading to swelling relative to the deeper regions of the gel brain. Within a matter of minutes of immersion in the liquid solvent, compression resulted in the formation of folds in the model, similar in shape and size to that of actual brain folds.

Even the researchers were impressed with the similarities in the gel brain and the actual human brain. Jun Chung, post-doctoral fellow and co-first author of the paper said, “When I put the model into the solvent I knew there should be folding, but I never expected that kind of close pattern compared to the human brain.” He went on further to say, “It looks like a real human brain.”

The relevance and key to those similarities lies in the unique shape of the human brain. Chung states, “The geometry of the brain is really important because it serves to orient the folds in certain directions.” Chung’s claims are that their model, which on a large geometric scale is the same as a real human brain, had the same curvature, which led to the formation of folds that so closely matched that of a real fetal brain.

What’s In a Brain Fold?

There are many ways that one can rationalize the folds of the human brain from an evolutionary perspective. For instance, it was once believed that folded brains were a result of evolution of the large cortex to fit into the small volume with the benefit of decreasing the length of neuronal wiring and therefore improving cognitive function.

What was previously unexplained was how the brain folds. Over many years of study there have been many hypotheses proposed. However, none of these developments have been used directly to lead to testable predictions. Now, the Harvard John A. Paulson School of Engineering and Applied Scientists researchers, in collaboration with scientists in France and Finland, have been able to show that the ultimate cause of brain folds is the result of a simple mechanical instability that is most likely a result of buckling.

Why It Matters

The brain will not be exactly the same in all humans, but all brains should feature the same major folds, which indicate good health. This research shows that if the global geometry of the brain is interrupted, or part does not mature/grow properly, then the major folds might not be present where they should; which may lead to dysfunction of the brain. This study helps scientist to better understand the folds in the brain in more depth, which may help unlock the innermost workings of the human brain and could ultimately explain some brain disorders.

Sources

Harvard John A. Paulson School of Engineering and Applied Sciences. (2016, February 1). New research replicates a folding human brain in 3D: Study substantiates a simple mechanical framework for how the human brain folds. ScienceDaily. Retrieved February 2, 2016 from www.sciencedaily.com/releases/2016/02/160201122842.htm

No items found.
NeuroTrackerX Team
February 3, 2016
What Makes Baseball Pitches So Different?

The art of Baseball pitching has been evolving through the years. We can now understand more about the different pitches we see than ever before. Fastballs, Curveballs, Sliders, Changeups are some of the pitches that batters are all too used to striking out on, so what makes them so different?

What makes baseball pitches so different from each other? Most baseball fans know that the type of pitch depends on the grip and the release of the pitcher. It takes years for a pitcher to properly learn and perfectly execute a pitch and most pitchers end up learning 3 or 4 pitches maximum during their baseball careers.

Essentially, the difference between baseball pitches relies completely on physics. Baseballs have seams on them and combined with the grip and the release method, each pitch can result in a completely different trajectory for the ball.

Boston Red Sox Pitcher David Price, seen during his career with the Tampa Bay Rays, about to release his pitch off the mound. (Photo Credit: J. Meric)[/caption]

The most famous pitch is the fastball. Fastballs, especially 4-seamers, will generally stay in a straight line and might even give the illusion that they are rising (when in fact they are simply not dropping down as fast). The objective of the fastball is to overpower the batter with speed, ultimately causing him to swing too late and miss on hitting the ball. Some of the best pitchers in baseball record the highest speeds on radars. Top fastball pitchers in the MLB regularly reach the mid and upper 90's. One of the fastest pitches ever seen was by Aroldis Chapman as it reached 106 mph (Watch It HERE). Whether it's David Price, Justin Verlander, Josh Beckett or Fernando Rodney, the list containing fastest pitches on record is filled with elite MLB pitchers.

Baseball pitches, and their different trajectories, rely mostly on the Magnus Effect. The grip and the release are basically ways that the pitcher manipulates the ball, and its spin direction, to allow for different trajectories to happen. One exception to this rule is the Knuckleball. The Knuckleball is one of the most fascinating pitches in baseball because it is extremely unpredictable. Location heatmaps for regular pitches are fairly consistent. Fastballs are usually up and away, curveballs are low and inside, even sliders, changeups or sinkers follow a consistent pattern. Knuckleballs, however, are all over the place. Their unpredictability stems from the low number of spins. Fastballs will spin 8 times on average before reaching the plate. Good knuckleball pitches will usually do 1 - 1 1/2 spins. This affects the trajectory of the ball because the wake wave it leaves behind keeps rotating from top spin to backspin, usually resulting in an almost impossible to predict trajectory.

In addition, while fastballs will usually crack the 90s, knuckleballs are almost the opposite. Great knuckleballs will hover around 63 mph or so. The most famous knuckleballer of course, is R.A. Dickey who has revived his career after inching towards retirement by adopting the knuckleball and reaching the amazing potential he had all along, eventually wining the Cy Young Award for Best Pitcher in 2012.

Watch the video below for more information about the different baseball pitches:

No items found.
NeuroTrackerX Team
January 31, 2016
(FR) L'entrainement visuel sportif utilise par les gardiens de but de la NHL

Ces dernieres annees, on a realise l'importance grandissante de l'entrainement visuel.

L’entrainement visuel et les athlètes élite

Ces dernières années, on a réalisé l’importance grandissante de l’entrainement visuel. Les athlètes de haut niveau savent maintenant que tout comme il est nécessaire d’aller au gym, leur cerveau a aussi besoin de pratique. Le défi principal reste de pouvoir avoir accès à un programme issu de recherches scientifiques qui permet de constater des résultats concrets. Étant donné l’horaire chargé des athlètes elite, un aspect crucial à considérer demeure le temps requis pour effectuer ces exercices.

Le gardien de but étoile Braden Holtby, des Capitals de Washington, a incorporé l’entrainement visuel dans sa routine. Cet entrainement amène les athlètes à parfaire leurs habiletés afin de mieux performer, au jeu comme dans la vie de tous les jours. Les sportifs doivent prendre des décisions en quelques fractions de seconde. La capacité de leur cerveau à traiter l’information visuelle, c’est-à-dire la vitesse à laquelle ils reconnaissent des scénarios puis agissent, est essentielle au succès. NeuroTracker a démontré qu’il avait un impact direct sur l’amélioration de la vitesse à traiter les informations visuelles par le cerveau.

Pourquoi certains joueurs sont meilleurs que d’autres?

Le NeuroTracker pourrait aussi aider la vision du jeu. Un athlète doit pouvoir rapidement analyser la situation autour de lui afin d’identifier les opportunités et les dangers. Prenons par exemple les récipiendaires des 8 derniers trophées Norris, décernés aux meilleurs défenseurs de la LNH : Nicklas Lidstrom (2 fois), Duncan Keith (2 fois), Erik Karlsson (2 fois), ainsi que P.K Subban et Zdeno Chara, une fois chacun. Ils partagent tous un profil en commun, celui d’être fiables en défensive et électrisants lors de l’offensive. Cela démontre l’importance d‘avoir une lecture claire de la partie. Il faut arriver au bon endroit au bon moment. L’entrainement perceptivo-cognitif pourrait bien devenir la clé pour améliorer votre lecture des situations. Comme l’a dit un jour Wayne Gretzky « Un bon joueur de hockey joue là où se trouve la rondelle. Un grand joueur de hockey joue là où la rondelle va aller ». NeuroTracker vous permet non seulement d’entretenir votre attention, il pourrait de plus vous aider à développer les aptitudes nécessaires pour anticiper le déroulement du jeu.

Un autre aspect qui différencie les gardiens de but étoile de la NHL, c’est leur constance. L’inconstance peut être causée par un manque de concentration, parfois par la fatigue. Si vous passez une nuit à mal dormir, il est probable que vous ne serez pas aussi performant que d’habitude le lendemain. Des expériences scientifiques ont démontré que, NeuroTracker peut aider à améliorer l’endurance cognitive et pour maintenir le niveau d’efficacité élevé nécessaire aux athlètes d’élite.

Malgré la conscientisation concernant l’importance d’un entrainement visuel sportif, le plus grand défi demeure de comprendre les preuves scientifiques appuyant chaque produit. Ce qui différencie un produit testé scientifiquement d’un produit qui ne s’appuie pas sur des données scientifiques est la transférabilité. Cela signifie qu’un programme d’entrainement dont les résultats scientifiques sont transférables produira des améliorations dans d’autres domaines qui partagent les mêmes caractéristiques, malgré une situation différente.

En gros, un programme d’entrainement visuel doit permettre de mieux performer dans un sport en particulier, mais aussi dans d’autres sphères d’activités, directement grâce à l’entrainement. NeuroTracker à effectué une étude avec une équipe de soccer qui a démontré une amélioration notable de la précision de leurs passes. Vous pouvez télécharger cette étude et découvrir plus sur la transférabilité ICI.

Comment devenir le prochain récipiendaire du trophée Vézina  (meilleur gardien de but dans la ligue)?

Imaginez les meilleurs gardiens de but de la ligue. Ce qui les différencie, c’est leur capacité a anticiper le jeu. Qu’on pense à Henrik Lundqvist, Carey Price, Braden Holtby ou encore Pekka Rinne, ils agissent au bon endroit au bon moment et savent où va se diriger la rondelle.

L’entrainement visuel sportif est devenu un prérequis pour obtenir un niveau de performance élite. Parlez-en à Braden Holtby, qui avait au début de cette saison un record de 16-4-0 (le plus de victoires dans la ligue au moment), une moyenne de buts alloués de 1.96 (3e de la ligue) et un pourcentage d’arrêts de .927.

Vous pouvez en apprendre davantage sur les gardiens de but de la NHL qui utilisent l’entrainement sportif visuel ici : Unmasked – Vision training a new tool for goaltenders

No items found.
NeuroTrackerX Team
January 28, 2016
New Research May Help to Develop New Treatments for Bipolar Disorder - Neuroscience Revelation of the Week

A new study may have potentially revealed new avenues for researchers to continue to explore, from different perspectives, the ways in which the brain can itself prevent bipolar disease expression (also referred to as resilience). This gives researchers hope that further exploration might lead to the development of better treatments for the disorder.

A group of researchers at the Icahn School of Medicine at Mount Sinai recently published an online journal in Translational Psychiatry revealing their findings in a study observing bipolar disorder. The research found that naturally occurring changes within the wiring of the brain can ultimately help patients who are genetically exposed to a high risk of developing bipolar disorder, onset the illness. The findings of the study may have potentially revealed new avenues for researchers to continue to explore, from different perspectives, the ways in which the brain can itself prevent disease expression (also referred to as resilience). This gives researchers hope that further exploration might lead to the development of better treatments for the disorder.

A Highly Hereditary Mental Illness – Bipolar Disorder

Bipolar disorder is characterized as a manic-depressive illness. It is a disorder of the brain that leads to extreme fluctuations in the patient’s mood, activity levels, energy, as well as the ability to complete day-to-day tasks. Bipolar disorder is highly hereditary. This means that individuals with a sibling, parent or grandparent who suffer from the disease have a much higher risk of developing the disorder, as compared to those who have no family history.

Mapping Connectivity Patterns Show Abnormalities in Resilient Patients Similar to Bipolar Patients

This study, with the use of functional magnetic resonance imaging (MRI), mapped the connectivity pattern of the brain of 3 groups of individuals: healthy individuals (unrelated), patients who have been diagnosed with bipolar disorder, and siblings of bipolar patients who did not develop the illness (resilient patients). Each group had their brain scanned while being asked to perform a non-emotional and emotional task – each of which tapped into different aspects of the brain’s function, commonly known to be affected by bipolar disorder. The resilient siblings, as well as the bipolar patients, showed similar abnormalities in the brain’s emotional processing connectivity network. Additionally, the resilient patient’s displayed further changes in the brain's wiring within said networks.

Sophia Frangou, MD, PhD, Professor of Psychiatry at the Icahn School of Medicine Sinai at Mount Sinai and author of the study said, “The ability of the siblings to rewire their brain networks means that they have adaptive neuroplasticity that may help them to avoid the disease even though they still carry the genetic scar of bipolar disorder when they process emotional information.” Dr. Sophia Frangou continues ongoing research using the same neuro-imaging systems to study the differences in the brain’s wiring and how it might either decrease or increase a patient’s likelihood of developing mental health issues.

Dr. Frangou’s research has been able to confirm that a family history of mental illness poses the greatest risk factor to patients. She continues to focus on the fact that the majority of pre-disposed patients remain healthy and searches for answers as to why. Dr. Frangou says in response to the study’s findings, “Looking for biological mechanisms that can protect against illness opens up a completely new direction for developing treatments. Our research should give people hope that even though mental illness runs in families, it is possible to beat the odds at the genetic lottery.”

Sources:

2016, January 15. “Changes in Brain Connectivity Protect Against Developing Bipolar Disorder.” Science Daily (website). Retrieved from http://www.sciencedaily.com/releases/2016/01/160105112100.htm. Accessed on January 26, 2016.

No items found.
NeuroTrackerX Team
January 27, 2016
Canadian Campaign Brings Awareness to Mental Health Issues

Find out the key signs to recognize mental health issues.

A few years back, Bell, a telecommunications company in Canada, started the #BellLetsTalk campaign. The goal is to bring more awareness to mental health issues, including depression, anxiety, post-traumatic stress, and other mental health challenges. The idea is simple: Bell will donate 5 cents for any worldwide mention of #BellLetsTalk, any share of the BellLetsTalk image on its Facebook page, and also for every single text or phone call made by a Bell cellphone user.

The campaign has been widely successful, raising over $6.1million last year. On Twitter alone, almost 5 million tweets were sent with the hashtag, which became the #1 trending topic both worldwide and in Canada. Individuals who have struggled or are struggling with any kind of mental health issues are particularly encouraged to share their story and assist any others that might be going through a tough time.

It is encouraging to see the positive reaction to the campaign and associated fundraising numbers, but the most important benefit is greater awareness of mental health issues. Outcomes include greater recognition of symptoms and encouragement for people to pursue diagnosis and treatment.

So What Are the Symptoms of Mental Health Illnesses?

There are many symptoms of mental health illnesses, which can vary from one person to another. People may react differently and unpredictably to the challenges they face. It is a common misconception that all symptoms must be present to show that the person is experiencing a depression or other mental health issues. In fact, only in very severe cases would all the symptoms get combined. Most of the time, only a few symptoms show, and individuals cope with each symptom differently.

Patience, understanding and open communications are important to helping anyone struggling with mental illness overcome the difficulties they are facing. Here are some common examples and signs of symptoms of mental health illnesses according to the Mayo Clinic (Source):

  • Feeling sad or down
  • Inability to concentrate on tasks and/or some confused and mixed thinking
  • Excessive fear and worrying
  • Feelings of guilt and remorse
  • Withdrawal from friends or colleagues
  • Constantly looking for isolation and disengagement from activities
  • Significant tiredness, low energy
  • Excessive sleeping OR having trouble sleeping
  • Sudden anger, hostility or violence
  • Suicidal thinking (if you or someone you know has suicidal thoughts call for help IMMEDIATELY. Reach out to others, call 911 or your country's suicide hotline)

If you notice any of these symptoms in someone you know, it is important to be aware of their situation and to try to open a dialogue to allow two-way communication. These issues don't just “go away". Help - through support, diagnosis, and treatment - is needed.

Getting on the path to improvement starts with two simple words: "Let's Talk".

No items found.
NeuroTrackerX Team
January 27, 2016
(FR) NeuroTracker et le hockey en mode tactique

Le hockey demeure un des sports les plus frenetiques sur la planete. Les joueurs doivent suivre les mouvements d'une rondelle rapide comme l'eclair et predire les deplacements des joueurs de leur equipe et des adversaires tout au long de la partie. Pour y arriver, ils doivent effectuer des calculs et developper des strategies complexes en quelques instants. Comment est-il possible, alors, d'ameliorer votre capacite a reconna�tre un jeu pendant qu'il se produit et de predire le prochain?

Le hockey demeure un des sports les plus frénétiques sur la planète. Les joueurs doivent suivre les mouvements d’une rondelle rapide comme l’éclair et prédire les déplacements des joueurs de leur équipe et des adversaires tout au long de la partie. Pour y arriver, ils doivent effectuer des calculs et développer des stratégies complexes en quelques instants.

Comment est-il possible, alors, d’améliorer votre capacité à reconnaître un jeu pendant qu’il se produit et de prédire le prochain? C’est là qu’entre en scène l’entrainement cognitif. Il est important de rester en forme afin d’atteindre le maximum de ses aptitudes. C’est la même chose pour le cerveau. Le cerveau humain est capable d’exploits considérables. L’entrainer pour s’adapter aux besoins compliqués d’une partie de hockey permet de s’octroyer un avantage stratégique considérable.

Historiquement, les coachs ont utilisé des mises en situation à l’entrainement pour améliorer les habiletés cognitives en préparations pour un match. Aujourd’hui, il y a un entrainement pour votre cerveau aussi. NeuroTracker utilise une technologie d’environnement 3D de pointe, avec des logiciels permettant de suivre de multiples objets pour augmenter la concentration et la capacité à prendre des décisions des athlètes.

Pour y arriver, on a typiquement besoin d’une dizaine de minutes et d’aussi peu que deux séances par semaine. L’efficacité de l’entrainement est basé sur la « plasticité » du cerveau, c’est-à-dire sa capacité à apprendre et à s’adapter.

(voir la recherche ici)

En traitant mieux les informations visuelles, vous pouvez prendre de meilleures décisions. Par exemple, l’entrainement avec NeuroTracker a aidé des joueurs de soccer à faire des meilleures décisions de passe, un bénéfice qui a été prouvé dans des expériences scientifiques.

L’entrainement en mode tactique offre d’autres scénarios simulés. Face aux images de véritables parties de hockey, vous pouvez poursuivre l’apprentissage en immersion avec le NeuroTracker. Dans une étude récente,  la transférabilité des bénéfices et améliorations apportées par NeuroTracker a été mesurée et démontrée au soccer. (Lien vers l'étude)

Dans un entrainement de base NeuroTracker, on doit suivre des cibles à l’intérieur d’un groupe, habituellement quatre sphères sur huit. En mode tactique, on augmente la demande cognitive substantiellement en présentant des situations complexes demandant au participant de prendre des décisions, tout en continuant de suivre les cibles. C’est épuisant mentalement, même pendant de courtes sessions. C’est le résultat de votre cerveau qui travaille fort à apprendre. Cela permet d’obtenir des améliorations très vite, mais c’est aussi, en théorie, l’approche idéale pour développer de la résistance mentale. Cette force est essentielle pour éviter les buts accordés à la dernière minute, ce qui survient si souvent quand les joueurs sont épuisés.

Entrainer le cerveau à répondre rapidement à ce genre de stimuli visuels devient chose commune dans les organisations sportives d’envergure partout à travers le monde. Savoir où aller et quand y aller, basé sur des indices visuels et une meilleure compréhension de la façon dont le jeu se déroule, c’est la marque des joueurs d’exception.

Que vous soyez défenseur ou gardien de but, la capacité à traiter l’avalanche d’informations qui déferle pendant une attaque est vitale. Comme joueur de centre ou ailier, pouvoir reconnaître le schéma qui se développe dans un échec avant est crucial pour déjouer la contre-attaque.

Le mode tactique de NeuroTracker est créé spécifiquement pour ça. Cet ajout d’une grande quantité d’exercices cognitifs abstraits avec des scénarios de prises de décision offre une approche intégrée à l’entrainement de performance.

No items found.
NeuroTrackerX Team
January 23, 2016
This Is How Fast a Tennis Serve Looks Like

So how fast is a 150-mph tennis serve exactly? Watch a cool video demonstrating the POV of a 150 mph serve.

One of the main things that determines how good a player is in a given sport is their reaction time. Reaction time depends on many factors. One of the aspects that can help determining reaction time is how quickly the brain interprets information it receives, and how rapidly it sends out orders to active motor skills. The first part of the process is known in the scientific community as visual information processing speed. What is actually like to see a super fast serve is really surprising.

The fastest tennis serve on record is held by Australian tennis player Samuel Groth, when he hit a serve reaching 263 kph/163.4 mph (Source: Guinness World Records).

As you can see in the video, a 150 mph serve can be quite difficult to return. A player on the receiving side of the court not only needs to have the skills to be able to return the ball in a very short decision-making moment, but he also has to anticipate where it's going. In fact the ball moves faster than conscious perception can manage to execute a reaction. This means that tennis players have to initially return serves unconsciously, the consciousness catches up.

Both of these tasks could challenge the brain's cognitive functions beyond regular day-to-day activities. This is where perceptual-cognitive training might be able to help. In a recent study, a group of researchers were able to provide some evidence that perceptual-cognitive training has the potential to improve attention, working memory, visual information processing speed and other executive functions.

The video above provides an extra understanding of the challenges tennis players go through during a match.

No items found.
NeuroTrackerX Team
January 16, 2016
10 Facts You Did Not Know About Your Brain

Have you ever taken the time to think about your brain? What is it made of? How does it work and does it ever stop working? Here are the top 10 things you didn't know about your brain.

Have you ever taken the time to think about your brain? What is it made of? How does it work and does it ever stop working? The brain is a very complex organ that acts as the command center for the central nervous system of the human body. It contains approximately 86 billion neurons (nerve cells) and billions of axons and dendrites (nerve fibers) that connect to trillions of synapses (connections), which in turn, makes the body function. This means that the human brain has more connections than stars in the universe. These connections help the brain to receive input from the body’s sensory organs, which it then translates and sends out to the body’s muscles.

There are many facts about the human brain that one might consider to be interesting. Take, for instance, that it is the largest, relative to body size, of any other vertebrates on this planet. Here is a small compilation of 10 facts that are likely to blow your mind.

The Human Brain

1. size does not matter:

The average human brain weighs a whopping 3.3 pounds. Contrary to common belief, size does not matter when it relates to intelligence. In fact, Albert Einstein’s brain weighed less than average at just 2.7 pounds.

2. It is impossible to tickle yourself:

It is impossible to tickle yourself due to the function of the cerebellum, which is responsible for your body’s physical movement. The function of this portion of our minds is capable of predicting sensation and preventing response.

3. You have a fat brain:

The brain of the human body is the fattiest of all organs in the body. It consists of at least 60 percent fat.

4. Yawning wakes up your brain:

We yawn because we are tired and want to go to sleep, right? That is what most have grown up believing, but the actual purpose of a yawn is to send more oxygen to the brain. When the brain is low on oxygen, we instinctively yawn, which delivers more oxygen to the brain. This, in turn, cools it down and thus wakes it up. The reason we yawn when someone else does is because the ‘mirror neurons’ in our brain are functioning. Those who do not, likely have damage to this area and will likely experience difficulty communicating and socializing with others.

5. What is in a grain of sand:

A piece of brain tissue the same size as a grain of sand, contains 1 billion synapses and 100,000 neurons that are “talking” to each other.

6. 2 year olds are more active then you might think:

Of course you probably associated a two year old with a tiny ball of energy, but did you know that their tiny brains actually consume twice as much energy as an adult?

7. As we age:

From birth, the brain develops from back to front. As it begins to degenerate in our elder years, the opposite phenomenon occurs.

8. We do not “feel” pain in our brain:

The brain has no pain receptors. This means that you cannot actually feel pain. Although, it does work in tandem with your spinal cord which allows it to detect and process pain, but you cannot actually feel if someone were to be poking at it. That is why brain surgery can be done while the patient is awake.

9. You use all of your brain:

A popular rumor says that we only use 10 percent of our brain. This is far from the truth. In fact, there is not a single part that does not have a specific function.

10. The human brain is the only object on this planet that has the ability to contemplate itself:

Think about that one for a while.

Sources:

Lewis, T. (2015, March 26). “Human Brain: Facts and Anatomy.” Live Science (website). Retrieved from http://www.livescience.com/29365-human-brain.html. Accessed on January 13, 2016.

Lyle, T. “15 Things You Probably Did Not Know About Your Brain.” Lifehack (website). Retrieved from http://www.lifehack.org/articles/lifestyle/15-things-you-probably-didnt-know-about-your-brain.html. Accessed on January 13, 2016.

Omes, S. (2007, July 7). “17 Things You Did Not Know About…Your Brain.” Discovery Magazine (website). Retrieved from  http://discovermagazine.com/2007/brain/if-i-only-had-a-brain. Accessed on January 13, 2016.

No items found.
NeuroTrackerX Team
January 14, 2016
Neuroscience Revelation of the Week - Survey: Over 70% of Participants Wouldn't Know They Are Having A Stroke

When asked about what they would do if they noticed some of the most common stroke symptoms, over 70% of a survey respondents would wait for these symptoms to subside.

A survey done at the Ronald Reagan UCLA Medical Center found that when a group of people under the age of 45 were asked what they would do in the hours following a possible stroke, 73 percent of them stated that they would wait to see if symptoms subsided.

Doctors have found that the 3 hours following stroke symptoms, or the first stroke symptom, is a critical time referred to as the “golden window.” This golden window of opportunity must be respected if the patient wishes to see resolve from the effects of a stroke. It is during this time that medical attention is crucial in order to attempt to restore blood flow to the patient’s brain. Only by adequately restoring this flow that doctors are able to reverse or minimize the damage caused to the brain by the stroke.

Timely Treatment for Stroke is Vital

In the United States, stroke is the third primary cause of death. Strokes happen when the brain is deprived of oxygen. Strokes are classified into two different categories and the treatment will therefore be contingent upon the cause of the stroke. A stroke can be ischemic or hemorrhagic. Ischemic strokes happen when the blood flow to the brain is restricted. Hemorrhagic strokes occur as a result of a blood vessel(s) in the brain bursting.

David Liebeskind, MD, Professor of neurology, Director of Neurovascular Imaging Research Core at Ronald Reagan UCLA Medical Center and Director of Outpatient Stroke and Neurovascular Programs, says that treating stroke in a timely manner is more important than treatment for any other existing medical problems. He states: “There is a very limited window in which to start treatment because the brain is very sensitive to a lack of blood flow or to bleeding, and the longer the patient waits, the more devastating the consequences.”

A Need for Improved Stroke Education Efforts

The study completed by UCLA Medical Center asked a total of more than a thousand people what their reaction would be to experiencing the following symptoms:

  • Numbness;
  • Weakness;
  • Difficulty seeing;
  • Difficulty speaking.

These are, of course, the most common symptoms associated with stroke. Only one out of three of those who were asked (under the age of 45) said that they would seek medical attention immediately should they experience the above symptoms. With a startling 73 percent of those who participated in this survey saying that they would wait to see if symptoms dissipated, and an estimated stroke occurring approximately every 40 seconds in the US (that is nearly 800,000 a year) – it is clear that educating the younger portion of our society about the urgency of stroke treatment is a necessity.

This study has revealed that most individuals are not aware of the urgency required when dealing with strokes, nor are they cognizant of the associated symptoms of a stroke. For someone who has suffered a stroke, there is only a mere matter of hours in which medical treatment will be effective. Once this window has passed, the effects of stroke will be irreversible. Do you know the symptoms of stroke and would you recognize the need for immediate medical care should you experience these symptoms?

(Source: ScienceDaily.com)

No items found.
NeuroTrackerX Team
January 12, 2016
Cognitive Functions Are The Key To Improving Student Performance

NeuroTracker isn't just for athletes. NeuroTracker's program can lead to improvements in the classroom as it helps improve crucial skills needed in a schooling context such as working memory, information processing speed and other cognitive functions.

NeuroTracker isn’t just for athletes. NeuroTracker’s programs have been used for positive improvements in the classroom, with the aim of improving crucial skills needed in learning. These include working memory, information processing speed, and other cognitive functions (read the study HERE).

Most of the problems these students face stem from an inability to focus on the task on hand. This problem is intensified when multiple audio and visual stimuli are available to distract the student. After training with NeuroTracker, students can be typically expected to build-up their selective and distributed attention, needed for mental focus on what’s important, and for avoiding distractions.

How NeuroTracker Works

NeuroTracker instantly captures the attention of students, in part through ‘gamification’ - it’s fun to do! But it also requires intense focus, so it draws the participant in. Students are asked to track a select number of balls floating across the screen, then to correctly identify them after a period of movement and collisions. These movements, and the constant distractions present, train the student’s mind to focus on what is important while processing and dismissing the distractions around them. The students typically experienced both increased focus and an increase in the amount of time they are able to sustain their focus.

Distributed Attention

Distributive attention is the ability to distribute your focus on multiple objects at the same time. Each object a student focuses on is mentally handled as an independent process – they must be able to calculate the movement of each object individually.

Training your distributive focus allows you to multitask better and prioritize competing demands on your attention. It is not uncommon in the classroom, or in other real-life situations, that a student is faced with multiple stimuli that have to be juggled at once. Listening to a lecture, reading a presentation, and taking notes all at the same time is challenging for many students. Often they will attempt to juggle all of the tasks but end up not fully being able to focus on any one. Training the distributive focus allows a student to better process multiple stimuli and perform better in all of them.

Selective Attention

Training with NeuroTracker is a good way to build up a student’s selective attention – essential for weeding out the unimportant stimuli and for focusing on what’s important. Having to track specific objects in a field of many, and repeating that exercise multiple times, is like going to the gym for the brain’s filter. It becomes stronger, and thus it is easier for a student to decipher what is the crucial information and to tune out the remaining distractions.

Check out the study “Enhancing Cognitive Function Using Perceptual-Cognitive Training” for more information about the role of 3D multiple object tracking in improving cognitive functions.

No items found.
NeuroTrackerX Team
January 9, 2016
5 Numbers You Should Know (About Your Brain)

Find out 5 interesting numbers about your brain.

3.

The average weight of a healthy brain in pounds. The actual weight of the brain varies between males and females, with males having the heavier brain. Just so you know, the weight has no effect on determining your intelligence level. (Source)

73.

The approximate percentage of your brain that consists of water. Only a 2% dehydration level can negatively affect your performance in tasks requiring attention and short-term memory. In addition, your brain consists of nearly 60% fat, making it the fattest organ in your body. (Source, Source 2)

85 billion.

The lowest estimate of the number of neurons in the human brain. Estimates range from 85 billion to over 120 billion but no one has been able to accurately determine the exact number just yet. (Source)

150.

Milliseconds needed for a thought to be generated and acted upon. The definition of a thought here is a reaction to a sensory trigger. If your team scores a goal, you basically need at least 150 milliseconds to start reacting to it. In other words, almost half the time of the blink of an eye. In general, some estimates say that the brain processes thoughts at 260 miles per hour. Faster than the fastest F1 car available. (Source)

No limit

Numbers of years to pass before your brain can no longer learn. Our brains are able to learn new things every single day of our lives. There is literally no limit to our learning. (Source)

As we grow older, our mental capacities might decrease but that does not mean that our brains are unable to learn. Active aging brings some negative elements to it such as decreased awareness and focus. On the other hand, our experience is as high as it will ever be.

No items found.
NeuroTrackerX Team
January 8, 2016
Neuroscience Revelation of the Week - Cognitive Training Can Help Your Brain Regulate Negative Emotions

Feeling depressed on not in a good mood? There's an app for that. Well, not just yet, but maybe sooner than you think.

Every week we will use this new series to cover a new scientific revelation in neuroscience that has happened recently.

Feeling depressed? There's an app for that. Well, not just yet, but maybe soon.

A new study from the Ben-Gurion University of the Negev Neuropsychology lab, led by Dr. Noga Cohen, has shown that some cognitive training can help the brain regulate negative emotions.

As part of the study, 26 volunteers were monitored before and after multiple computerized cognitive training sessions that utilized functional magnetic resonance imaging (fMRI). The main task for the participants was to identify the direction of a target arrow among many others that surround it. The participants that completed the intense version of the training showed reduced activation in their amygdala - a brain region involved in negative emotions.

"These findings are the first to demonstrate that non-emotional training that improves the ability to ignore irrelevant information can result in reduced brain reactions to emotional events and alter brain connections," said Dr. Noga Cohen.

In the future, the possibility of having such a cognitive training software might lead to helping individuals suffering from depression or anxiety.

(Source: ScienceDaily.com)

No items found.
NeuroTrackerX Team
January 6, 2016
Duchess of Cambridge, Kate Middleton, Brings More Awareness to Mental Health Issues

The Duchess of Cambridge, Kate Middleton, got to visit the Anna Freud Centre to bring more attention to mental health issues. During her visit, she also experienced NeuroTracker!

Having just finished her maternity leave, the Duchess of Cambridge highlighted the importance of mental health issues by visiting the Anna Freud Centre. Kate Middleton spent the day interacting with kids and participating in multiple activities at the center, including using NeuroTracker and testing her cognitive abilities.

The Duchess of Cambridge visits the Anna Freud Centre for Children in Islington.
The Duchess is pictured with a pair of 3D glasses trying NeuroTracker

The Anna Freud Centre aspires to help kids with mental health issues continue their life normally. The Duchess of Cambridge is keen on bringing more attention to the issue along with emphasizing the importance of early intervention. The Centre is not only a place for kids to improve, but it also conducts its own research and provides a wide array of services to assist children.

To read more about and see a video of Kate Middleton's visit, click HERE

No items found.
NeuroTrackerX Team
January 6, 2016
Top 5 Challenging Exercises To Do With NeuroTracker (That Will Benefit You)

In order to maximize the benefits of your NeuroTracker training, adding cognitively challenging exercises to your NeuroTracker training will increase your cognitive load. So what are some of the most challenging exercises you can do?

In order to maximize the benefits of your NeuroTracker training, adding cognitively challenging exercises to your NeuroTracker training will increase your cognitive load, challenging your brain to even higher levels of its mental capacity. It needs to be noted, do not do these extra tasks unless you have already followed the NeuroTracker training protocol. Otherwise, you will be hurting your progress rather than helping it. We recommend you follow these protocols with a certified NeuroTracker trainer.

Here are the top 5 challenging exercises you can do, ordered from less difficult to extremely difficult:

5. Balancing - Difficulty Rating: 2 out of 5 Brains                              

2outof5

Conducting a NeuroTracker session while standing on a balancing ball is a moderate challenge. As difficult as this is, it is the easiest of the top 5. Your cognitive load will be distributed between NeuroTracker and balancing. We hope you're good at balancing!

4. Jumping Rope - Difficulty Rating: 2.5 out of 5 Brains                  

2.5outof5

Combining a physical exercise with NeuroTracker training, also known as dual-task, provides an increasing difficulty level. This will challenge your brain to handle all the requirements of the physical exercise, such as timing, muscle control, etc., combined with the cognitive challenge of NeuroTracker.

3. Weight Lifting - Difficulty Rating: 4 out of 5 Brains                    

4outof5

Weight lifting can be exhausting, and more importantly, has to be done using precise techniques to not hurt the lifter. That by itself sounds challenging, how about adding some NeuroTracker training? We will admit that it is really difficult. But It's not impossible. Watch Taekwondo Champion Aaron Cook as he does it:

2. Tactical Awareness - Difficulty Rating: 5 out of 5 Brains          

5outof5

What if you are given something that is supposed to fully challenge your mental capacity? Now what about adding some NeuroTracker to it? This is Tactical Awareness mode, in which the user is provided with an image that requires him or her to make a very quick identification followed by a decision-making task. All this while the NeuroTracker session is still happening. Good luck with this one!

1. Tactical Awareness w/dual-task - Difficulty Rating: OFF THE CHARTS!

Reserved for only the elite of the elite. This will put your brain under very heavy cognitive load. In addition to challenging your ability to master regular tactical awareness mode, this step will challenge you physically as well. We have only seen a very select few who can do this. Perhaps you will be the next one!

No items found.