NeuroTracker seamlessly integrates into different programs and adapts to the unique needs of your business.

NeuroTracker offers a ready-to-use training solution that sets up in just 10 minutes. Benefit from expert pre-made training programs for all user types and start deriving value immediately.

Each session takes just 6 minutes, making it easy to integrate into busy schedules without disrupting routines.

Easily onboard, monitor, and manage multiple users from a single dashboard—ideal for healthcare providers, educators, and performance organizations.

Significant cognitive gains can be seen in as little as 2–3 hours of distributed training—accelerating ROI and client outcomes.

Nearly anyone can train with NeuroTrackerX—regardless of age, ability, or background. It's effective for diverse populations and use cases.

Train on-site or remotely, on desktop or tablet—ideal for hybrid workforces, telehealth, or distributed teams.

Track individual and group progress with real-time analytics. Identify trends, optimize outcomes, and measure impact with data you can trust.

Our cloud-based platform is built for security and scalability across any size team or organization.

Assign custom plans based on individual goals, cognitive baselines, or professional roles—from rehabilitation to high performance.
NeuroTrackerX offers powerful cognitive training tools for both individuals and professionals. But when it comes to delivering consistent, measurable results at scale, our Business Software is in a league of its own.
Who It's for
Dashboard
Multi-User Management
NeuroTracker Training
Custom Sessions
Custom Questionnaires
Training Stats
Academy Certification
Support Resources
Advanced Options
Human 66 Brain Challenge
NeuroTracker is used by thousands of people, including high profile athletes and celebrities that share the same passion for improving their brain.
Start adding value to your services. Talk to our sales team whenever suits you!
With 15 years of independent research, NeuroTracker is a leading tool used by neuroscientists to study human performance.
Published Research Papers
Research Institutes Using NeuroTracker
Issued Patents and Patents Pending
3 hours of NeuroTracker training improves verbal and matrix working memory span in Canadian armed forces personnel.
To investigate if working memory in Canadian Armed Forces can be improved with unsupervised remote NeuroTracker training as a practical performance enhancement tool.
66 Canadian Armed Forces soldiers were randomly assigned to NeuroTracker training (30 sessions over two weeks), Dual n-back training, or a passive control group. Verbal and matrix WM span were assessed before and after training, along with the Multi-Attribute Task Battery: MATB-II multi-tasking assessment.
Both active groups improved on the training tasks with 10-50% improvement in post-training working memory measures. No significant transfer was found for the MATB-II multi-tasking assessment.

NeuroTracker training transfers to significantly improved useful field of view, an ability strongly associated with driving skills.
To examine if NeuroTracker training transfers to useful field of view (UFOV) performance, a measure strongly associated with driving performance.
Twenty healthy young adults between the ages of 23 and 33 years were recruited and evenly assigned to either a NeuroTracker training program or active control group using a math game (2048). Both groups completed 5 hours of training distributed over 5 weeks. Both groups completed pre-post standardized assessments of UFOV.
The NeuroTracker training group exhibited significantly improved UFOV performance, whereas the active control group showed only a small, statistically nonsignificant improvement in the task. The researchers suggest that NeuroTracker and UFOV performance are likely dependent on overlapping cognitive abilities, and that these abilities can be trained and measured in young adults which could lead to improving driving safety.

To investigate the ‘selfish brain hypothesis’, which suggests the brain prioritizes its own glucose needs over those of the peripheral organs such as skeletal muscle, using individual and dual-task assessments with NeuroTracker and exercise on a cycle ergometer.
32 participants were randomly assigned to a no priority, cognitive priority (focus on NeuroTracker task), or physical priority (focus on physical task) group. NeuroTracker and a cycle ergometer were used to measure cognition and physical performance, respectively. Participants completed 5 assessments: 2 cognitive, 1 predicted VO2 max, and 1 dual task. During the dual task participants completed 3 NeuroTracker sessions, while cycling on a cycle ergometer. The cycle ergometer was modified to remove demands on balance, isolating aerobic demands.
Results revealed that the physical priority group had significantly higher cycle ergometer performance compared to the cognitive priority group. However, overall physical performance remained relatively stable throughout the physical and dual task assessments. All groups experienced improvements in their visual tracking speed scores as they progressed through the study. No evidence was found to support the selfish brain hypothesis during dual task performance, in contrast results may indicate an arousal effect from physical exercise, heightening NeuroTracker performance compared to single task performance.

A single 6-min NeuroTracker baseline is highly correlated with simulated driving crash risk and lane deviation in healthy older people.
To test the theory that driving performance is strongly associated with dynamic processing of multiple objects, by evaluating if NeuroTracker measures correlate with older driving performance in simulated scenarios.
30 experienced drivers with ages ranging from 65-85 years old were tested on one session of NeuroTracker (3D-MOT), and completed up to 3 driving scenarios on the STISIM 3.0 driving simulator. 5 unexpected events were included in the scenarios to test crash risk. The correlations between NeuroTracker speed thresholds and simulator measures (crash rate, lane deviation) were then calculated.
Highly significant correlations were found between NeuroTracker thresholds and both crash rate and lane deviation in the highway driving scenarios. Lower NeuroTracker scores were strongly associated with lane deviation during highway merging, and higher NeuroTracker scores related to participants being less likely to crash across different scenarios, and to have better overall lane maintenance skills. This study adds plausibility to the idea that a multiple object tracking test such as NeuroTracker could be a candidate for inclusion in an assessment battery for older drivers.

Perceptual cognitive training improves biological motion perception evidence for transferability of training in healthy aging
To investigate if the decline in biological motion perception associated with healthy aging can be reversed with a short NeuroTracker training intervention.
13 participants completed 3-hours of NeuroTracker training over 5-weeks, and 28 control participants did either experimental training or no training (overall mean age of 67 years old). Pre-post assessments of biological motion perception was assessed with a VR walker (point like display) at 4m and 16m.
Pre-NeuroTracker training participants displayed significantly lower performance for interpreting human movement at 4m, compared to 16m. Controls showed no change post-training, whereas the NeuroTracker trained group's performance at 4m rose to the level of their performance at 16m. As biological motion perception abilities are deemed to be important for social skills, as well as critical for collision avoidance at 4m, the researchers concluded that the results demonstrate NeuroTracker to be a useful form of generic training for helping older people deal with socially relevant dynamic scenes.

Attention and feedback are known to play critical roles in learning. This preliminary study sought to assess the benefits of instant feedback within NeuroTracker task performance.
38 young adults (mean 23yrs old) completed 4 NeuroTracker sessions over two days. 19 participants were assisted with feedback on test performance throughout the sessions, and 19 were given no feedback. Pre and post training assessments were completed using the Continuous Performance Test II to measure cognitive function.
The participants assisted with feedback demonstrated greater improvement in NeuroTracker scores over the 4 sessions. The feedback group also demonstrated better transferability effects to the CPT-II task, reflected by a significantly decreased pre/post mean error rate. The results indicate that feedback has a positive effect on performance and may be an important aspect of transfer to cognitive functions.

Comprehensive pre-post neuropsychological and qEEG neuroimaging assessments reveal robust and wide gains in college students' cognitive abilities.
To examine the effects of NeuroTracker training on standardised measures of attention, working memory, and visual information processing speed using standardized neuropsychological tests. Additionally to measure changes in brain state using functional brain imaging.
20 university-aged students were recruited and divided into an NT training group (30 sessions of NeuroTracker) and a non-active control group. Cognitive functions were assessed using standardized neuropsychological tests (IVA+Plus, WAIS-III, D-KEFS), and correlates of brain functions were assessed using quantitative electroencephalography (qEEG).
The trained group showed strong and consistent improvements in NeuroTracker speed thresholds throughout the training period. The NT group demonstrated significantly higher scores on the IVA+Plus Auditory, WAIS Symbol Search, WAIS Code, WAIS Block Design, WAIS Letter-Number Sequence, d2 Test of Attention, and D-KEFS Color Naming, Inhibition and Inhibition/Switching subtests (P < .01). For qEEG measures the NT group demonstrated significant relative power increases in a range of frequencies within the beta bandwidth, with both eyes open and closed resting states. These changes were observed across frontal regions of the brain (executive function) and represented increases in brain wave speed associated with heightened brain activity and neuroplasticity. Overall results indicated that NeuroTracker training can enhance attention, information processing speed, and working memory, and also lead to positive changes in neuroelectric brain function.

2.6-hours of NeuroTracker training significantly improves visual abilities and sports vision skills in Olympic tennis, taekwondo, and water polo athletes.
To analyze the effectiveness of NeuroTracker training to improve sports vision and cognitive performance using a progressive single and dual-task training protocol.
37 elite water polo (13), taekwondo (12) and tennis elite athletes (12) completed 26 NeuroTracker sessions progressing from single-task training to progressively complex dual-task training. Pre and post training all athletes underwent a comprehensive battery of optometric vision assessments. Throughout the training program both athletes and their coaches completed frequent visual-analogue questionnaire assessments to assess changes in concentration, perception speed and peripheral vision performance.
Overall NeuroTracker learning rates were high. Although scores initially dropped on progressing to more complex dual-task motor-skills, performance recovered quickly to the level expected with single-task performance. This that dual-task training methods with NeuroTracker can efficiently consolidate new skills into using a progressive overload methodology. Post-training assessments revealed a statistically significant gains in most visual abilities, including static visual acuity, stereopsis, spatial contrast sensitivity, saccadic ocular movements, and visual selective attention. Transfer to related sports performance abilities was seen with both coach and athlete questionnaire assessments, with consistently significant improvements throughout the program. Although the athletes tended to rate their performance higher than coaches, their improvement ratings were close to identical.

A single NeuroTracker baseline strongly correlates with some metrics of competitive soccer performance in NCCA athletes.
To investigate the relationship between visual tracking speed (NeuroTracker) and soccer-specific performance measures.
19 NCAA Division I soccer players completed 1 NeuroTracker core session baseline and soccer performance metrics were obtained from WyScout.
Statistical analyses showed a nonsignificant correlation between NeuroTracker score and passing accuracy, and a strong correlation found between consistency score (a sub-component measure of NeuroTracker) and passing accuracy. Specifically for attacking players there was a stronger correlation with consistency and passing accuracy. For defenders, consistency and defensive win rate had a strong correlation.

Learn the Fundamentals of NeuroTracker Science & Technology through our Academy
NeuroTracker Academy is an education platform that has been designed by NeuroTracker experts and key opinion leaders. Find access to a wealth of resources and specialized application modules that will enable users and trainers alike to gain a deeper understanding of the science and technology.

We proudly collaborate with a select group of innovative partners who share our passion for cognitive improvement. Their wide range of expertise helps apply the technology in cutting-edge ways, shaping the future of brain training. Join us to unlock your full potential!