Watch this video to understand why NeuroTracker is used by many people in all different industries.
From ADHD to special forces and athletes to elderly. NeuroTracker is being used to improve humans everywhere
NeuroTracker seamlessly integrates into different programs and adapts to the unique needs of your business.
NeuroTracker offers a ready-to-use training solution that sets up in just 10 minutes. Benefit from expert pre-made training programs for all user types and start deriving value immediately.
Each session takes just 6 minutes, making it easy to integrate into busy schedules without disrupting routines.
Easily onboard, monitor, and manage multiple users from a single dashboard—ideal for healthcare providers, educators, and performance organizations.
Significant cognitive gains can be seen in as little as 2–3 hours of distributed training—accelerating ROI and client outcomes.
Nearly anyone can train with NeuroTrackerX—regardless of age, ability, or background. It's effective for diverse populations and use cases.
Train on-site or remotely, on desktop or tablet—ideal for hybrid workforces, telehealth, or distributed teams.
Track individual and group progress with real-time analytics. Identify trends, optimize outcomes, and measure impact with data you can trust.
Our cloud-based platform is built for security and scalability across any size team or organization.
Assign custom plans based on individual goals, cognitive baselines, or professional roles—from rehabilitation to high performance.
Gain in Concentration Ability and Sustained Attention
Increase in Perception Speed
Reduction in the Effects of Cognitive Fatigue
Start adding value to your services. Talk to our sales team whenever suits you!
With 15 years of independent research, NeuroTracker is a leading tool used by neuroscientists to study human performance.
Published Research Papers
Research Institutes Using NeuroTracker
Issued Patents and Patents Pending
60 minutes of NeuroTracker training transfers to significant improvements in passing accuracy in NCAA Division 1 soccer players.
The purpose of this study was to investigate the relationship between the effects of 4-weeks of NeuroTracker training on in-game soccer performance measures.
13 NCAA Division I soccer players were split into trained and control groups. Both groups completed a NeuroTracker baseline. The trained group then completed 10 NeuroTracker training sessions (60 minutes) over a 4-week period. Soccer performance metrics were obtained from WyScout where 2 game averages were examined to compare pre-post-NT performance.
Data analysis revealed a moderate improvement of the trained group over the control group in passing accuracy, a 8.5% increase post-training, versus a 3.5% increase. Small non-significant improvements were also observed for successful actions and short+medium passes for the NeuroTracker trained group.
NeuroTracker baselines pre-post exercise until exhaustion qualify the effectiveness of different hydration methods.
The purpose of this study was to examine the effect of the L-Alanyl-L-Glutamine dipeptide (AG) and electrolyte drink (ED) on cognitive function (NeuroTracker) following endurance exercise, in order to measure the effects of rehydration effectiveness.
12 male endurance athletes performed four trials, each consisting of running on a treadmill at 70% of VO2max for 1h, then at 90% of VO2max until exhaustion. One trial consisted of no hydration, another required ingestion of only a sports electrolyte drink (ED) and two trials required ingestion of a low dose (LD) and high dose of AG (HD) added to the ED. Cognitive function was measured through NeuroTracker baselines pre and post-exercise.
Before rehydration, subjects lost on average 2.4% of their body mass. Pre-post rehydration changes showed HD to be the most effective in aiding cognitive function, and electrolyte only having questionable benefit.
30 sessions of NeuroTracker training promotes safer driving skills on advanced driving simulators in both younger and older adults.
To investigate if NeuroTracker training can transfer to improved driving skills as measured by state-of-the-art driving simulators.
20 young adults and 14 older adults were divided into active and active-control groups. The active group completed 30 sessions of NeuroTracker training. Before and after training all participants were assessed using a high-fidelity driving simulator, which measured numerous aspects of driving performance.
The results of the study revealed that both young and older adults showed significant improvements in simulated driving performance following the NeuroTracker training. Specifically this included better lane keeping abilities, quicker reaction times to hazards, and enhanced overall situational awareness. The older adult group exhibited larger overall gains in driving performance. The researchers concluded that this study provides preliminary evidence that NeuroTracker training may improve driving safety, particularly through quicker detection of or reaction to dangerous events.
Scientific analysis of NeuroTracker driving research deems it to be relevant measure of driving safety in the context of renewing a license.
To combine several tests known to assess driving fitness and propose a methodology to bring these together under a single index termed the ‘Driver’s Safety Index’.
115 licensed drivers between the ages of 18 and 86 were separated into two groups: 64 young participants (average age of 29 years), and 51 older participants (average age of 77 years). Each participant was assessed on three different experimental phases. 1. Visual tests: visual acuity test (V1), stereoscopic vision test (V2), and a binocular visual field test (V3). 2. Simulator driving tests across 3 difficulty based scenarios: highway (low), rural (medium) and city (high). 3. NeuroTracker as a visuo-cognitive test. A wide range of driving performance metrics from the simulator test were analyzed for correlations with the visual tests, age, and NeuroTracker scores.
There were limited correlations between driving performance and the visual tests. High NeuroTracker scores correlated strongly with high driving performance, and low scores with low driving performance, along with a strong relationship for crash risk. NeuroTracker scores were also a better predictor of driving performance than age. Driving abilities are strongly associated with NeuroTracker scores. These findings highlight the importance of visuo-cognitive abilities in the assessment of driving abilities. This study paves the way toward a single, common indicator of driving behaviour. The study authors recommend that NeuroTracker should be a component in the battery of tests for obtaining or renewing a driving license.
NeuroTracker provides greater improvements in archery athlete's concentration than conventional archery training.
To investigate if NeuroTracker training can improve archery concentration performance at moment of shooting.
20 archers in an archery club were divided into two control groups. Over 12 visits the one group completed NeuroTracker training, while the other group completed conventional archery training. Pre-post assessments of concentration were completed by both groups using the Concentration Grid Test.
There was a significant transfer effect from both the NeuroTracker training and the conventional training on the improvement of the archery athlete’s concentration, however NeuroTracker training demonstrated stronger post-training improvements on the Concentration Grid Test across mean, standard deviation and gain scores. The researchers conclude NeuroTracker could be an effective training method to improve the concentration of archery athletes.
NeuroTracker baselines as a measure of spatial awareness correlate significantly with moderate intensity running during competitive rugby play.
This exploratory study sought to evaluate the relationship between spatial awareness, agility, and distance covered as measured by GPS.
12 American collegiate athletes were assessed on spatial awareness (NeuroTracker: 1 Core session),agility (Pro-agility and T Drill), and then measured for running distance in a competitive Rubgy match at low, moderate and high intensity running speeds.
Agility measures did not correlate with any of the running speeds, and the spatial awareness measure did not correlate with low or high intensity running. However spatial awareness did correlate significantly with moderate intensity running (cruising/striding). Spatial awareness, as measured by NeuroTracker, appears to be related to the moderate intensity movement patterns of rugby union athletes. The researchers hypothesize that the ability to track teammates and opponents while at striding speed may be result of the processing of external and internal stimuli, while generally attempting to navigate open space on the pitch.
To investigate the ‘selfish brain hypothesis’, which suggests the brain prioritizes its own glucose needs over those of the peripheral organs such as skeletal muscle, using individual and dual-task assessments with NeuroTracker and exercise on a cycle ergometer.
32 participants were randomly assigned to a no priority, cognitive priority (focus on NeuroTracker task), or physical priority (focus on physical task) group. NeuroTracker and a cycle ergometer were used to measure cognition and physical performance, respectively. Participants completed 5 assessments: 2 cognitive, 1 predicted VO2 max, and 1 dual task. During the dual task participants completed 3 NeuroTracker sessions, while cycling on a cycle ergometer. The cycle ergometer was modified to remove demands on balance, isolating aerobic demands.
Results revealed that the physical priority group had significantly higher cycle ergometer performance compared to the cognitive priority group. However, overall physical performance remained relatively stable throughout the physical and dual task assessments. All groups experienced improvements in their visual tracking speed scores as they progressed through the study. No evidence was found to support the selfish brain hypothesis during dual task performance, in contrast results may indicate an arousal effect from physical exercise, heightening NeuroTracker performance compared to single task performance.
NeuroTracker meets gold standard criteria as a cognitive enhancement tool, corroborated with positive pre-post changes in qEEG measures.
To examine the practical efficacy of cognitive enhancement interventions through a gold-standard template for assessing use of such tools, and to assess NeuroTracker evidence against the template for enhancing attention, working memory and visual information processing speed.
To assess cognitive tools and NeuroTracker specifically against the following gold-standard criteria and with qEEG findings on changes in neuroelectric brain activity: 1. Robust transfer effects, 2. No Side Effects or Risk of Toxicity, 3. Minimal time and monetary investment, 4) Lasting effects, 5) No ethical issues, 6) Can be used in combination with other interventions, 7) Can be applied to any population.
3-hours of training over 5-weeks with NeuroTracker demonstrated robust effects on attention, working memory, and visual information processing speed as measured by neuropsychological tests. Corresponding changes measured by qEEG were also corroborated these intervention effects. NeuroTracker was concluded to meet the gold standard criteria in points 1, 2, 3, and 5, with some evidence to support the other points, but further research needed.
60 minutes of NeuroTracker training significantly improves soccer passing accuracy in NCAA Division 1 female soccer players.
To examine the transferability of perceptual-cognitive training using NeuroTracker to on-field soccer performance parameters.
22 NCAA Division I women’s soccer players (ages of 18-25) were split into trained and control groups. After baseline testing on NeuroTracker, the experimental group completed 10 NeuroTracker sessions (60-mins) over four-weeks. Game performance data, successful action, passing percentage, and short-medium range passing percentage, was collected utilizing Wyscout video analysis software during a competitive season.
NeuroTracker visual tracking speeds for the trained group significantly increased by 68% from pre-training baseline, while the control group had a 12% increase from baseline testing effects. Analysis showed no significant effects of training over the control group for on performance metrics, except for average in game passing-accuracy, which increased significantly over the control group.
Learn the Fundamentals of NeuroTracker Science & Technology through our Academy
NeuroTracker Academy is an education platform that has been designed by NeuroTracker experts and key opinion leaders. Find access to a wealth of resources and specialized application modules that will enable users and trainers alike to gain a deeper understanding of the science and technology.
We proudly collaborate with a select group of innovative partners who share our passion for cognitive improvement. Their wide range of expertise helps apply the technology in cutting-edge ways, shaping the future of brain training. Join us to unlock your full potential!
NeuroTracker is used by thousands of people, including high profile athletes and celebrities that share the same passion for improving their brain.