Watch this video to understand why NeuroTracker is used by many people in all different industries.
From ADHD to special forces and athletes to elderly. NeuroTracker is being used to improve humans everywhere
NeuroTracker seamlessly integrates into different programs and adapts to the unique needs of your business.
NeuroTracker offers a ready-to-use training solution that sets up in just 10 minutes. Benefit from expert pre-made training programs for all user types and start deriving value immediately.
Each session takes just 6 minutes, making it easy to integrate into busy schedules without disrupting routines.
Easily onboard, monitor, and manage multiple users from a single dashboard—ideal for healthcare providers, educators, and performance organizations.
Significant cognitive gains can be seen in as little as 2–3 hours of distributed training—accelerating ROI and client outcomes.
Nearly anyone can train with NeuroTrackerX—regardless of age, ability, or background. It's effective for diverse populations and use cases.
Train on-site or remotely, on desktop or tablet—ideal for hybrid workforces, telehealth, or distributed teams.
Track individual and group progress with real-time analytics. Identify trends, optimize outcomes, and measure impact with data you can trust.
Our cloud-based platform is built for security and scalability across any size team or organization.
Assign custom plans based on individual goals, cognitive baselines, or professional roles—from rehabilitation to high performance.
Gain in Concentration Ability and Sustained Attention
Increase in Perception Speed
Reduction in the Effects of Cognitive Fatigue
Start adding value to your services. Talk to our sales team whenever suits you!
With 15 years of independent research, NeuroTracker is a leading tool used by neuroscientists to study human performance.
Published Research Papers
Research Institutes Using NeuroTracker
Issued Patents and Patents Pending
A single 6-min NeuroTracker assessment correlates with key NBA competition performance metrics across a season of play.
The purpose of this study was to determine the relationship between visual tracking speed (NeuroTracker) and reaction time on basketball specific measures of performance.
12 professional NBA basketball players (Orlando Magic) were tested with a 1-session NeuroTracker baseline (6-mins), reaction time assessment, and the were results compared to competitive performance metric across an NBA season. Competition data analysis focused on Assists, Turnovers, Assist-to-turnover ratio, and Steals.
Finding show that relationships between NeuroTracker baselines were most strongly correlatedwith Assist-to-turnover ratio, and Turnovers. Backcourt players were more likely to outperform frontcourt players in AST and accordingly very likely to achieve higher NeuroTracker performance. Reaction time was not related to any of the basketball-specific performance measures. Overall a single NeuroTracker session baselines showed significant correlation to the NBA players’ ability to see and respond to various stimuli on the basketball court in ways that resulted in better performance.
A variety of egg-based diets over 1-month improve performance on NeuroTracker compared to a no-egg diet.
To evaluate the impact of the nutritional impact of dietary intake of whole eggs, egg white, and egg yolk on visual cognitive performance (NeuroTracker) in healthy older adults.
99 healthy men and women aged 50 to 75 years were randomly assigned to one of five groups with different daily consumption of eggs alongside a record of their usual dietary intake. Over 1-month period participants either consumed four egg whites, two whole regular eggs, two whole omega-3-fortified eggs, four egg yolks, or no eggs (control). During the final 2 weeks of the study all participants completed 15 NeuroTracker.
On average male participants performed significantly better at NeuroTracker than females. All participants on egg-based diets performed significantly better across 2-weeks of NeuroTracker training than the no-egg controls. Findings suggest that whole eggs, egg whites and egg yolks are beneficial for visual cognitive performance in healthy older adults.
NeuroTracker baseline reveal stroboscopic vision training does not improve perceptual-cognitive skills, but may aid anticipation skills.
To analyze the repeated effect of stroboscopic vision training on perceptual-cognitive and anticipation skills in soccer players.
28 male soccer players randomized into two groups: Stroboscopic vision training and control groups. The trained group completed 8-weeks of stroboscopic training. Pre post assessments were completed for both groups, which included NeuroTracker baselines and assessments decision-making and anticipation skills.
Both groups improved by similar amounts in NeuroTracker baselines and decision-making. However the trained group showed a larger improvement in anticipation skill than the control group. The findings suggest that stroboscopic vision training does not improve perceptual-cognitive functions or decision-making, but may aid anticipation skills in soccer athletes.
NeuroTracker and reaction time measures reveal the effectiveness of different hydration modalities under severe physical fatigue.
To examine the effects of different rehydration strategies on cognitive performance under the effects of physical fatigue.
12 male endurance-trained runners (av. age: 23. years) were tasked with running on a treadmill at 70% of their predetermined VO2max for 1 h followed by running at 90% of VO2max until exhaustion on four separate days. On each day different hydration modalities were given (no hydration, electrolyte drink, electrolyte drink with a low dose of Sustamine, electrolyte drink with a high dose of Sustamine), drinking 250 mL every 15 min. Before and after each hour run, cognitive function (NeuroTracker) and reaction tests were administered.
Results showed that physical reaction time was faster for the low dose trial than the high dose trial. Analysis of lower body quickness indicates that performance in both the low and high dose trials were likely improved in comparison to the no hydration trial. NeuroTracker results indicated a possible greater performance for dehydration and low dose compared to only the electrolyte drink, while there was a likely greater performance in multiple object tracking for the high dose trial compared to consumption of the electrolyte drink only.
NeuroTracker pre-training of professional rugby players dramatically reduces the impact physiological fatigue on cognitive functions compared to controls.
To assess the inhibitory effects of physiological fatigue on cognitive function in elite athletes, and to determine if perceptual-cognitive conditioning can reduce any such effects.
22 rugby players from the Top 14 French Professional Rugby League were divided into two groups. The trained group underwent 15 NeuroTracker Core training sessions, and the untrained group did only 3 Core sessions (sitting) to determine an initial baseline measure. All the athletes were then assessed on NeuroTracker while performing on an exercise bike at 80% of their maximum heartrate.
For the trained group, NeuroTracker speed thresholds remained within 0.03% of the range of their baseline (performed sitting). For the untrained group, NeuroTracker speed thresholds dropped by 30% from their predicted baseline. Firstly, the findings suggest that physical fatigue can significantly reduce high-level cognitive functions elicited by the NeuroTracker task, even with seasoned professionals. Secondly, the results also indicate that such effects can be mitigated with prior perceptual-cognitive conditioning, with as little as 90 minutes of distributed training.
NeuroTracker measures performed at different numbers of targets can be useful in characterizing attentional capacities in different populations.
This study sought to investigate the resource limits for dynamic visual attention across age development using NeuroTracker speed thresholds as a measure of attentional capacity.
21 participants were grouped by age: school-aged (6-12 years), adolescent (13-18 years), adult (19-30 years). Each group completed NeuroTracker baselines using speed threshold measurements at progressively increasing numbers of targets.
For all groups, speed thresholds changed in a logarithmic way consistent with the relative increase in multiple object tracking demands. Attentional capacities for NeuroTracker were determined by age, with significantly lower multiple object tracking limits for school-aged individuals. The findings also suggested that the 3D stereo component of NeuroTracker is a critical enabling factor for processing greater attentional loads: school-aged individuals could track numbers of targets beyond the limits of 2D non-stereo (as established in previous studies). These findings suggest that NeuroTracker can be used for characterizing the development of resource allocation in attentional processes through the use of a measure that best approximates real-world conditions.
NeuroTracker performance is linked fluid reasoning intelligence, particularly so in conditions of high load tracking.
The objective of the study was to examine MOT capability at different levels of cognitive load (tracking 1,2,3, or 4 objects) and its association to higher level processes, particularly fluid reasoning intelligence.
70 adult participants (mean= 23 years of age) completed NeuroTracker and were then assessed on the Weschler Abbreviated Scale of Intelligence 2 test. Participants were asked to track one, two, three and four targets out of a total of 8 spheres for eight seconds.
The results showed that as the number of targets increased, the average speed the participants successfully tracked all the objects decreased. This finding allowed the researchers to confirm that average speed score can be used as a suitable metric for MOT and in turn, attention resource capacity. As a result, the outcomes indicate that visual tracking capability is positively associated with fluid reasoning intelligence. Consequently, this finding demonstrates that there is a link between fluid reasoning intelligence and MOT capability, especially in conditions of high load (tracking 4 out of 8 targets).
A short NeuroTracker training intervention significantly improves fine motor-skills in elderly adults diagnosed with cognitive impairments.
To investigate if older populations with clinically diagnosed cognitive impairments associated with fine-motor skills difficulties could measurably benefit from a short cognitive training intervention.
38 elderly participants, half with mild cognitive impairment (MCI) and half with mild dementia (MD) completed a total of 36 sessions of NeuroTracker training. The Montreal Cognitive Assessment (MoCA) test was used to assess the baseline cognitive status, and two batteries of manual motor skills assessments completed before and after the training program.
The results showed clear and significant post-training improvements in both manual dexterity tests. Analysis indicated that only 90-minutes of NeuroTracker training was needed to achieve these benefits with these populations. The researchers concluded that this type of intervention could have a broad impact on the aging population in terms of their daily quality of life.
A single NeuroTracker baseline strongly correlates with some metrics of competitive soccer performance in NCCA athletes.
To investigate the relationship between visual tracking speed (NeuroTracker) and soccer-specific performance measures.
19 NCAA Division I soccer players completed 1 NeuroTracker core session baseline and soccer performance metrics were obtained from WyScout.
Statistical analyses showed a nonsignificant correlation between NeuroTracker score and passing accuracy, and a strong correlation found between consistency score (a sub-component measure of NeuroTracker) and passing accuracy. Specifically for attacking players there was a stronger correlation with consistency and passing accuracy. For defenders, consistency and defensive win rate had a strong correlation.
Learn the Fundamentals of NeuroTracker Science & Technology through our Academy
NeuroTracker Academy is an education platform that has been designed by NeuroTracker experts and key opinion leaders. Find access to a wealth of resources and specialized application modules that will enable users and trainers alike to gain a deeper understanding of the science and technology.
We proudly collaborate with a select group of innovative partners who share our passion for cognitive improvement. Their wide range of expertise helps apply the technology in cutting-edge ways, shaping the future of brain training. Join us to unlock your full potential!
NeuroTracker is used by thousands of people, including high profile athletes and celebrities that share the same passion for improving their brain.