Watch this video to understand why NeuroTracker is used by many people in all different industries.
From ADHD to special forces and athletes to elderly. NeuroTracker is being used to improve humans everywhere
NeuroTracker seamlessly integrates into different programs and adapts to the unique needs of your business.
NeuroTracker offers a ready-to-use training solution that sets up in just 10 minutes. Benefit from expert pre-made training programs for all user types and start deriving value immediately.
Each session takes just 6 minutes, making it easy to integrate into busy schedules without disrupting routines.
Easily onboard, monitor, and manage multiple users from a single dashboard—ideal for healthcare providers, educators, and performance organizations.
Significant cognitive gains can be seen in as little as 2–3 hours of distributed training—accelerating ROI and client outcomes.
Nearly anyone can train with NeuroTrackerX—regardless of age, ability, or background. It's effective for diverse populations and use cases.
Train on-site or remotely, on desktop or tablet—ideal for hybrid workforces, telehealth, or distributed teams.
Track individual and group progress with real-time analytics. Identify trends, optimize outcomes, and measure impact with data you can trust.
Our cloud-based platform is built for security and scalability across any size team or organization.
Assign custom plans based on individual goals, cognitive baselines, or professional roles—from rehabilitation to high performance.
Gain in Concentration Ability and Sustained Attention
Increase in Perception Speed
Reduction in the Effects of Cognitive Fatigue
Start adding value to your services. Talk to our sales team whenever suits you!
With 15 years of independent research, NeuroTracker is a leading tool used by neuroscientists to study human performance.
Published Research Papers
Research Institutes Using NeuroTracker
Issued Patents and Patents Pending
Attention and feedback are known to play critical roles in learning. This preliminary study sought to assess the benefits of instant feedback within NeuroTracker task performance.
38 young adults (mean 23yrs old) completed 4 NeuroTracker sessions over two days. 19 participants were assisted with feedback on test performance throughout the sessions, and 19 were given no feedback. Pre and post training assessments were completed using the Continuous Performance Test II to measure cognitive function.
The participants assisted with feedback demonstrated greater improvement in NeuroTracker scores over the 4 sessions. The feedback group also demonstrated better transferability effects to the CPT-II task, reflected by a significantly decreased pre/post mean error rate. The results indicate that feedback has a positive effect on performance and may be an important aspect of transfer to cognitive functions.
A single NeuroTracker baseline strongly correlates with some metrics of competitive soccer performance in NCCA athletes.
To investigate the relationship between visual tracking speed (NeuroTracker) and soccer-specific performance measures.
19 NCAA Division I soccer players completed 1 NeuroTracker core session baseline and soccer performance metrics were obtained from WyScout.
Statistical analyses showed a nonsignificant correlation between NeuroTracker score and passing accuracy, and a strong correlation found between consistency score (a sub-component measure of NeuroTracker) and passing accuracy. Specifically for attacking players there was a stronger correlation with consistency and passing accuracy. For defenders, consistency and defensive win rate had a strong correlation.
High intensity exercise can be effectively combined with NeuroTracker as dual-task training for younger and older adults.
To examine the effects of a high intensity intermittent exercise (HIIE) protocol on performance with a perceptual-cognitive task (NeuroTracker), and whether effects differ between children, young adults, and older adults.
12 children, 12 young adults and 12 older adults completed a HIIE program consisting of eleven 30-second intervals at 90% VO2 max, interspersed with 2-minute active recovery periods at 50% VO2max. Before and during this exercise protocol, three sessions of NeuroTracker task were performed at 5, 15, and 25 minute intervals.
Young adults had significantly higher absolute NeuroTracker scores than children and older adults. Apart children, NeuroTracker scores improved each session, despite the exercise demands (greatest for young adults). The findings suggest that intensive exercise protocols are suitable to be combined with NeuroTracker cognitive training with younger and older adults, but not with children.
NeuroTracker meets gold standard criteria as a cognitive enhancement tool, corroborated with positive pre-post changes in qEEG measures.
To examine the practical efficacy of cognitive enhancement interventions through a gold-standard template for assessing use of such tools, and to assess NeuroTracker evidence against the template for enhancing attention, working memory and visual information processing speed.
To assess cognitive tools and NeuroTracker specifically against the following gold-standard criteria and with qEEG findings on changes in neuroelectric brain activity: 1. Robust transfer effects, 2. No Side Effects or Risk of Toxicity, 3. Minimal time and monetary investment, 4) Lasting effects, 5) No ethical issues, 6) Can be used in combination with other interventions, 7) Can be applied to any population.
3-hours of training over 5-weeks with NeuroTracker demonstrated robust effects on attention, working memory, and visual information processing speed as measured by neuropsychological tests. Corresponding changes measured by qEEG were also corroborated these intervention effects. NeuroTracker was concluded to meet the gold standard criteria in points 1, 2, 3, and 5, with some evidence to support the other points, but further research needed.
NeuroTracker training transfers to significantly improved useful field of view, an ability strongly associated with driving skills.
To examine if NeuroTracker training transfers to useful field of view (UFOV) performance, a measure strongly associated with driving performance.
Twenty healthy young adults between the ages of 23 and 33 years were recruited and evenly assigned to either a NeuroTracker training program or active control group using a math game (2048). Both groups completed 5 hours of training distributed over 5 weeks. Both groups completed pre-post standardized assessments of UFOV.
The NeuroTracker training group exhibited significantly improved UFOV performance, whereas the active control group showed only a small, statistically nonsignificant improvement in the task. The researchers suggest that NeuroTracker and UFOV performance are likely dependent on overlapping cognitive abilities, and that these abilities can be trained and measured in young adults which could lead to improving driving safety.
To compare performance and muscle architecture changes in starters and nonstarters during a National Collegiate Athletic Association Division I women's soccer season.
28 females (av. 20 years old) were assessed on NeuroTracker baselines, vertical jump power, repeated line drills and reaction time at preseason, midseason, and postseason. Muscle architecture changes using ultrasonography were assessed at preseason and postseason.
Both starters and non-starters showed similar status or improvements on all assessments across the season, except for line drills performance, which showed greater improvements for starters. NeuroTracker and reaction time performance improved regardless of playtime. Results of muscle architecture analysis indicated that practice training alone provide sufficient stimulus for improving muscle quality during the competitive season. Overall starters did not display significant benefits from competition over athletes who performed training only.
NeuroTracker measures of spare cognitive capacity reveal for the first time the different mental demands of live versus simulated jet piloting.
The goal of this multi-year research project was to develop methods for assessing the efficacy of training (including live and simulated platforms) by validating measures of cognitive workload that characterize skill acquisition.
10 evaluation pilots (100-300 flight hours of experience) were selected to perform low, medium and high difficulty flight manoeuvres in both a jet flight simulator and live jet flight (Aero Vodochody L-29 jet trainer) using experimental conditions. During flight ECG data (NeXus-4) and eye-tracking data (Dikablis) was collected. Flight performance was analysed for altitude, roll, and vertical speed errors, and cognitive workload was subjectively assessed (10-point Bedford Workload Scale). As a validated tool for evaluating perceptual-cognitive skills, NeuroTracker was selected as to measure spare cognitive capacity via extraneous load (Cognitive Load Theory). All pilots first completed home-based NeuroTracker consolidation training (15 Core sessions). NeuroTracker was integrated into the flight testbed. Low, medium and high difficulty flight manoeuvre tests were performed by all pilots, both without NeuroTracker, and while simultaneously performing NeuroTracker Core sessions.
Compared to performing NeuroTracker alone, live and simulated flight across all manoeuvres, caused a drastic decrease in NeuroTracker speed thresholds (average of ~97%). This, perhaps for the first time, objectively demonstrated that jet flight involves very high intrinsic cognitive loads. Live flight resulted in lower NeuroTracker speed thresholds and physiological performance than simulated flight, with greater differences for higher difficulty maneuverers. This evidence suggests that physiological and cognitive loads are significantly heavier in live flight, supporting the theory that that brain dynamics differ in real-world environments compared to those of a laboratory.
NeuroTracker pre-post measures reveal cognitive benefits for college females engaging in a 15-day diet with added beef nutrients.
To investigate if beef and beef-related nutrient intake can explain the variance in visual cognitive performance in young females.
52 college age women performed 15 NeuroTracker sessions over 15 days with normal eating habits, as a preliminary study. Then 80 college age women were randomized in an RCT study to either a daily beef or veggie patty and consumed 1 patty/day for 30 days, and assessed with NeuroTracker.
In the preliminary study, higher iron, cholesterol, choline, arginine and B vitamins levels were all significantly associated with higher NeuroTracker scores. In the RCT study, the beef group demonstrated higher average NeuroTracker scores. The researchers suggest that increased intake of beef associated nutrients may increase visual cognitive performance in college age women.
Statistical analysis of NeuroTracker learning reveals cognitive characteristics between attention-deficit/hyperactivity disorder, specific learning disorder, and Intellectual developmental disorder
To investigate if NeuroTracker learning rates can characterize different neurodevelopmental conditions in children.
The researchers focused on three different neurodevelopmental conditions: Attention-deficit/hyperactivity disorder (ADHD), Specific learning disorder (SLD), and Intellectual developmental disorder (IDD). 101 participants aged 6 to 17 years old completed a total of 30 NeuroTracker sessions over a period of 5 weeks, along with standardized neuropsychological assessments to confirm each neurodevelopmental diagnosis.
Progression in NeuroTracker scores throughout the training program were scientifically analyzed using a latent growth curve modeling technique. This analysis revealed 1) a decreased baseline performance for children with IDD along with slower initial learning rates, 2) children with ADHD and SLD demonstrate a reduced rate of longer-term learning, 3) a significant overlap exists between individuals diagnosed with ADHD and SLD.
Learn the Fundamentals of NeuroTracker Science & Technology through our Academy
NeuroTracker Academy is an education platform that has been designed by NeuroTracker experts and key opinion leaders. Find access to a wealth of resources and specialized application modules that will enable users and trainers alike to gain a deeper understanding of the science and technology.
We proudly collaborate with a select group of innovative partners who share our passion for cognitive improvement. Their wide range of expertise helps apply the technology in cutting-edge ways, shaping the future of brain training. Join us to unlock your full potential!
NeuroTracker is used by thousands of people, including high profile athletes and celebrities that share the same passion for improving their brain.