NeuroTracker seamlessly integrates into different programs and adapts to the unique needs of your business.
NeuroTracker offers a ready-to-use training solution that sets up in just 10 minutes. Benefit from expert pre-made training programs for all user types and start deriving value immediately.
Each session takes just 6 minutes, making it easy to integrate into busy schedules without disrupting routines.
Easily onboard, monitor, and manage multiple users from a single dashboard—ideal for healthcare providers, educators, and performance organizations.
Significant cognitive gains can be seen in as little as 2–3 hours of distributed training—accelerating ROI and client outcomes.
Nearly anyone can train with NeuroTrackerX—regardless of age, ability, or background. It's effective for diverse populations and use cases.
Train on-site or remotely, on desktop or tablet—ideal for hybrid workforces, telehealth, or distributed teams.
Track individual and group progress with real-time analytics. Identify trends, optimize outcomes, and measure impact with data you can trust.
Our cloud-based platform is built for security and scalability across any size team or organization.
Assign custom plans based on individual goals, cognitive baselines, or professional roles—from rehabilitation to high performance.
NeuroTrackerX offers powerful cognitive training tools for both individuals and professionals. But when it comes to delivering consistent, measurable results at scale, our Business Software is in a league of its own.
Who It's for
Dashboard
Multi-User Management
NeuroTracker Training
Custom Sessions
Custom Questionnaires
Training Stats
Academy Certification
Support Resources
Advanced Options
Human 66 Brain Challenge
NeuroTracker is used by thousands of people, including high profile athletes and celebrities that share the same passion for improving their brain.
Start adding value to your services. Talk to our sales team whenever suits you!
With 15 years of independent research, NeuroTracker is a leading tool used by neuroscientists to study human performance.
Published Research Papers
Research Institutes Using NeuroTracker
Issued Patents and Patents Pending
NeuroTracker measures performed at different numbers of targets can be useful in characterizing attentional capacities in different populations.
This study sought to investigate the resource limits for dynamic visual attention across age development using NeuroTracker speed thresholds as a measure of attentional capacity.
21 participants were grouped by age: school-aged (6-12 years), adolescent (13-18 years), adult (19-30 years). Each group completed NeuroTracker baselines using speed threshold measurements at progressively increasing numbers of targets.
For all groups, speed thresholds changed in a logarithmic way consistent with the relative increase in multiple object tracking demands. Attentional capacities for NeuroTracker were determined by age, with significantly lower multiple object tracking limits for school-aged individuals. The findings also suggested that the 3D stereo component of NeuroTracker is a critical enabling factor for processing greater attentional loads: school-aged individuals could track numbers of targets beyond the limits of 2D non-stereo (as established in previous studies). These findings suggest that NeuroTracker can be used for characterizing the development of resource allocation in attentional processes through the use of a measure that best approximates real-world conditions.
Older adults show clear improvements in cognitive abilities at the end of a NeuroTracker training intervention, and additional gains one month later.
To investigate if perceptual-cognitive training can provide a proactive intervention to enhance cognition in older adults with memory problems.
47 healthy participants aged 60-90 with subjective memory problems were divided into active and control groups. All participants completed three robust neuropsychological assessments over a three- month period. Active participants completed these before, after and following a 7 week NeuroTracker training intervention.
The NeuroTracker trained group improved significantly on the task, with significant or major transfer to scores in memory tasks (e.g., CVLT-II: Immediate Free Recall; Short-Term Memory Recall, and Long- Term Memory Recall), working memory tasks (e.g., Digit Span Backward) and cognitive flexibility tasks (e.g., D-KEFS Verbal Fluency Category Switching and D-KEFS Verbal Fluency Letter Fluency). NeuroTracker scores also correlated to the scale of these improvements for processing speed, memory performance, and cognitive flexibility. Furthermore, some increased transfer benefits were found one month after the training intervention, potentially indicating heightened neurogenesis and promise for neuroplastic cognitive rehabilitation. The overall results suggest that this form of perceptual-cognitive training can significantly enhance cognition in a sustained way, with a relatively short training intervention.
NeuroTracker pre-post baselines reveal the positive effects of a season of collegiate soccer play on perceptual-cognitive functions.
To examine physiological and cognitive differences between starters and non-starters in women’s soccer over the course of a season.
28 NCAA Division I female soccer players were tested at preseason and postseason on battery of assessments. This battery included a one session baseline NeuroTracker, vertical jump power, repeated line drills, reaction time, cognitive questionnaires, and finally, muscle architecture changes using ultrasonography.
Over the season, both groups had very similar NeuroTracker baselines, and both group’s speed thresholds improved significantly from pre-season to post-season. As there was no training intervention, the researchers concluded that this improvement effect revealed the positive influence of daily soccer practice on cognitive functions. This suggests NeuroTracker is a sensitive measure of the cumulative effects of sports training over time. These measures contrasted the cognitive questionnaire results, where the soccer player self-reported decreases in energy, focus and alertness, in line with increased fatigue, over the season.
NeuroTracker assessments reveal that healthy older people quickly recover their 3D multiple object tracking abilities diminished by natural aging.
This study measured the capacity of older participants to improve their tracking speed thresholds (NeuroTracker), to investigate if age related cognitive decline can be reversed with a training intervention known to be directly relevant to the effects of healthy aging.
20 healthy younger adults (mean age 24 years old) and 20 healthy older adults (mean age 67 years old) performed 15 NeuroTracker training sessions distributed over 5 weeks.
Both groups obtained benefit from training with a similar rate of progression. Though the older group started off at a significantly lower level than the younger group, they obtained speed thresholds that were similar to those of untrained younger adults by the end of the training program. Furthermore, towards the end of the training program the rate of learning appeared to have slowed for the younger group, yet the older group still showed a strong learning curve, suggesting greater improvements with continued training. In conclusion, although healthy older people show a significant age-related deficit in the NeuroTracker task, they respond strongly to training effects and demonstrate an ability to fully reverse age-related functional decline with a short intervention of NeuroTracker training.
NeuroTracker training reveals some moderate benefits for the decision-making abilities of law enforcement officers engaged in active duty.
To investigate if NeuroTracker training can improve perceptual-cognitive skills related to decision-making skills for law enforcement officers.
40 elite law enforcement officers completed a pre-post test experiment on a video based simulated task environment to establish baseline scores for situational awareness, anticipation and decision-making skills. Participants were randomly assigned to training, control and passive groups. The training group completed NeuroTracker sessions around duty schedules over a period of three-weeks. Pre- and post-testing was scored by five police procedures subject-matter-experts.
The simulated task results showed an average decline in scores, the control participants remained unchanged, while the NeuroTracker group showed moderate increases. Improvements in NeuroTracker scores were observed overall, but varied atypically. Although some far transfer effects to law enforcement decision-making abilities were seen, fatigue and stress-related effects of active duty may have influenced results.
To examine the effects of 14-days ATP supplementation (adenosine 5′-triphosphate) on NeuroTracker visual tracking speed, reaction time, mood and cognition in a double-blind crossover study.
22 adults were randomized to either an active PeakATP® group or a placebo control group and supplemented for 14-days. They then tested on 3 minutes of maximum intensity cycling. Pre, immediately post, and 60-minutes post, all participants completed a NeuroTracker baseline, a visuomotor reaction test (Dynavision D2), a Profile of Mood States Questionnaire and a cognition assessment (ANAM). After another 14 days of no supplementation, the active and control groups were then reversed and the whole procedure was repeated.
NeuroTracker results improved on the second testing procedure, however average differences between active and control groups were negligible. No significant interactions were found on the other assessments, apart from reaction time performance, which improved meaningfully with post ATP supplementation. The results suggest ATP may help decrease fatigue related effects from intense bouts of exercise, but not higher-level cognitive functions.
3-hours of NeuroTracker training dramatically improves older adults' abilities to predictively interpret human body language cues at close distances.
To investigate the extent to which older people's abilities predict biological motion cues to declines with natural aging, and to see if any such effects can be reversed through a NeuroTracker training intervention.
41 older adults with mean age of 68yrs old were divided into trained, active control (placebo), and passive control (no training) groups. They were measured on a standardized BMP post training, which consisted of 15 NeuroTracker sessions distributed over 5 weeks.
Only the NeuroTracker trained group showed transfer to BMP, who demonstrated substantial improvements in processing BMP at 4m. The conclusion was a clear and positive transfer of perceptual-cognitive training onto a socially relevant ability in the elderly.
NeuroTracker baselines as a measure of spatial awareness correlate significantly with moderate intensity running during competitive rugby play.
This exploratory study sought to evaluate the relationship between spatial awareness, agility, and distance covered as measured by GPS.
12 American collegiate athletes were assessed on spatial awareness (NeuroTracker: 1 Core session),agility (Pro-agility and T Drill), and then measured for running distance in a competitive Rubgy match at low, moderate and high intensity running speeds.
Agility measures did not correlate with any of the running speeds, and the spatial awareness measure did not correlate with low or high intensity running. However spatial awareness did correlate significantly with moderate intensity running (cruising/striding). Spatial awareness, as measured by NeuroTracker, appears to be related to the moderate intensity movement patterns of rugby union athletes. The researchers hypothesize that the ability to track teammates and opponents while at striding speed may be result of the processing of external and internal stimuli, while generally attempting to navigate open space on the pitch.
Attention and feedback are known to play critical roles in learning. This preliminary study sought to assess the benefits of instant feedback within NeuroTracker task performance.
38 young adults (mean 23yrs old) completed 4 NeuroTracker sessions over two days. 19 participants were assisted with feedback on test performance throughout the sessions, and 19 were given no feedback. Pre and post training assessments were completed using the Continuous Performance Test II to measure cognitive function.
The participants assisted with feedback demonstrated greater improvement in NeuroTracker scores over the 4 sessions. The feedback group also demonstrated better transferability effects to the CPT-II task, reflected by a significantly decreased pre/post mean error rate. The results indicate that feedback has a positive effect on performance and may be an important aspect of transfer to cognitive functions.
Learn the Fundamentals of NeuroTracker Science & Technology through our Academy
NeuroTracker Academy is an education platform that has been designed by NeuroTracker experts and key opinion leaders. Find access to a wealth of resources and specialized application modules that will enable users and trainers alike to gain a deeper understanding of the science and technology.
We proudly collaborate with a select group of innovative partners who share our passion for cognitive improvement. Their wide range of expertise helps apply the technology in cutting-edge ways, shaping the future of brain training. Join us to unlock your full potential!