Watch this video to understand why NeuroTracker is used by many people in all different industries.
From ADHD to special forces and athletes to elderly. NeuroTracker is being used to improve humans everywhere
NeuroTracker seamlessly integrates into different programs and adapts to the unique needs of your business.
NeuroTracker offers a ready-to-use training solution that sets up in just 10 minutes. Benefit from expert pre-made training programs for all user types and start deriving value immediately.
Each session takes just 6 minutes, making it easy to integrate into busy schedules without disrupting routines.
Easily onboard, monitor, and manage multiple users from a single dashboard—ideal for healthcare providers, educators, and performance organizations.
Significant cognitive gains can be seen in as little as 2–3 hours of distributed training—accelerating ROI and client outcomes.
Nearly anyone can train with NeuroTrackerX—regardless of age, ability, or background. It's effective for diverse populations and use cases.
Train on-site or remotely, on desktop or tablet—ideal for hybrid workforces, telehealth, or distributed teams.
Track individual and group progress with real-time analytics. Identify trends, optimize outcomes, and measure impact with data you can trust.
Our cloud-based platform is built for security and scalability across any size team or organization.
Assign custom plans based on individual goals, cognitive baselines, or professional roles—from rehabilitation to high performance.
Gain in Concentration Ability and Sustained Attention
Increase in Perception Speed
Reduction in the Effects of Cognitive Fatigue
Start adding value to your services. Talk to our sales team whenever suits you!
With 15 years of independent research, NeuroTracker is a leading tool used by neuroscientists to study human performance.
Published Research Papers
Research Institutes Using NeuroTracker
Issued Patents and Patents Pending
NeuroTracker baselines pre-post exercise until exhaustion qualify the effectiveness of different hydration methods.
The purpose of this study was to examine the effect of the L-Alanyl-L-Glutamine dipeptide (AG) and electrolyte drink (ED) on cognitive function (NeuroTracker) following endurance exercise, in order to measure the effects of rehydration effectiveness.
12 male endurance athletes performed four trials, each consisting of running on a treadmill at 70% of VO2max for 1h, then at 90% of VO2max until exhaustion. One trial consisted of no hydration, another required ingestion of only a sports electrolyte drink (ED) and two trials required ingestion of a low dose (LD) and high dose of AG (HD) added to the ED. Cognitive function was measured through NeuroTracker baselines pre and post-exercise.
Before rehydration, subjects lost on average 2.4% of their body mass. Pre-post rehydration changes showed HD to be the most effective in aiding cognitive function, and electrolyte only having questionable benefit.
3-hours of NeuroTracker training dramatically improves older adults' abilities to predictively interpret human body language cues at close distances.
To investigate the extent to which older people's abilities predict biological motion cues to declines with natural aging, and to see if any such effects can be reversed through a NeuroTracker training intervention.
41 older adults with mean age of 68yrs old were divided into trained, active control (placebo), and passive control (no training) groups. They were measured on a standardized BMP post training, which consisted of 15 NeuroTracker sessions distributed over 5 weeks.
Only the NeuroTracker trained group showed transfer to BMP, who demonstrated substantial improvements in processing BMP at 4m. The conclusion was a clear and positive transfer of perceptual-cognitive training onto a socially relevant ability in the elderly.
Several studies have shown that aerobic exercise can slow age-related cognitive decline, and in some cases, improve cognitive function in the older population. The purpose of this study was to investigate for the first time, the effects of resistance training on cognitive function, as measured by changes in NeuroTracker measures.
25 older adults with a mean age of 70yrs were split into a trained group (6 weeks of resistance exercises), and an untrained group. Perceptual-cognitive ability was measured pre and post training using NeuroTracker baselines.
The older adults who performed six weeks of resistance training experienced significant improvements in perceptual-cognitive function as measured by NeuroTracker. Resistance training may therefore be an effective means to slow age related cognitive decline.
NeuroTracker training transfers to significantly improved useful field of view, an ability strongly associated with driving skills.
To examine if NeuroTracker training transfers to useful field of view (UFOV) performance, a measure strongly associated with driving performance.
Twenty healthy young adults between the ages of 23 and 33 years were recruited and evenly assigned to either a NeuroTracker training program or active control group using a math game (2048). Both groups completed 5 hours of training distributed over 5 weeks. Both groups completed pre-post standardized assessments of UFOV.
The NeuroTracker training group exhibited significantly improved UFOV performance, whereas the active control group showed only a small, statistically nonsignificant improvement in the task. The researchers suggest that NeuroTracker and UFOV performance are likely dependent on overlapping cognitive abilities, and that these abilities can be trained and measured in young adults which could lead to improving driving safety.
NeuroTracker 3D-MOT training is more effective at inducing HRV associated flow states in young soccer players, than 2D-MOT.
To compare the learning efficiency 3D-MOT (NeuroTracker) with 2D-MOT, and investigate whether any advantages can be reflected by heart rate variability (HRV).
26 female U15 soccer players completed the 2D- and 3D-MOT tasks with the order reversed for half of the participants. HRV measures were recorded live during the training.
The female soccer players displayed higher learning efficiency in the 3D-MOT task than in the 2D-MOT. HRV analysis revealed that the training had some stimulation associated with inducing flow states in 2D, but that this effect was significantly greater with 3D-MOT. The researchers concluded that this study highlights the role of flow experience in the utility and applicability of 3D-MOT in soccer sport.
Detailed analysis of dietary intake in combination with daily NeuroTracker baselines reveals key nutrient levels for optimal perceptual-cognitive performance.
To examine the influence of nutritional intake on visual perceptual-cognitive performance, measured by NeuroTracker, in young healthy adults.
98 healthy men (38) and women (60) aged 18–33 years maintained their usual dietary intake while completing NeuroTracker 15 sessions of NeuroTracker over a 15-day period. Food logs and extensive lifestyle measures including body composition, cardiovascular health, sleep and exercise patterns, and general readiness to perform were collected for analysis.
Males consumed significantly more calories, macronutrients, cholesterol, choline, and zinc and performed significantly better on NeuroTracker than the females. Participants who consumed more than 40% of kcals from carbohydrates, less than 24% of kcals from protein, more than 2,000 μg/day lutein/zeaxanthin or more than 1.8 mg/ day of vitamin B2 performed significantly better on NeuroTracker than those who consumed less than those amounts. The researchers concluded that perceptual-cognitive performance is positively influenced by higher carbohydrate, lutein/ zeaxanthin, and vitamin B2 dietary intake, while high protein consumption had negative impacts.
Rigorous feasibility study finding NeuroTracker to have high accessibility and adherence for at-home independent cognitive training.
To investigate the feasibility of using a remote therapeutic cognitive intervention for brain injury survivors using an at-home training program.
20 older female and male adults were assessed for cognitive health status using a self-report questionnaire and the Mini-Mental State Examination (MMSE) and deemed cognitively healthy. The at-home participants were provided with NeuroTracker training and completed 20 training sessions over 5 weeks. Participant recruitment, retention, adherence, and experience were used as markers of feasibility. Individual session scores, overall improvement, and learning rates between groups was also assessed.
The remote intervention was found to have strong feasibility overall. This was supported by high recruitment and retention, 90% participant adherence, along with ease of use of the program. Differences in screen size and 3D technology showed no differences on cognitive benefits achieved from training, with significant improvements in task performance across the program, which was also equivalent to lab-based training. The researchers concluded that NeuroTracker provides a promising at-home option for cognitive training for cognitively healthy adults and brain injury survivors.
To investigate if the typically declining perceptual-cognitive abilities of healthy older people can be improved with NeuroTracker training.
20 younger adults (mean age 27 years old) and 20 older adults (mean age 66 years old) completed 3-hours of NeuroTracker training distributed over 3 weeks.
Although older adults had significantly lower NeuroTracker scores than older adults, they demonstrated a strong learning response to the training, equivalent to their younger peers. By the end of the training program the older adults closely matched the initial baseline performance of younger adults. Although the results demonstrate a decline in perceptual-cognitive functions from healthy aging, the results suggest this decline can be quickly reversed with a short training intervention.
NeuroTracker meets gold standard criteria as a cognitive enhancement tool, corroborated with positive pre-post changes in qEEG measures.
To examine the practical efficacy of cognitive enhancement interventions through a gold-standard template for assessing use of such tools, and to assess NeuroTracker evidence against the template for enhancing attention, working memory and visual information processing speed.
To assess cognitive tools and NeuroTracker specifically against the following gold-standard criteria and with qEEG findings on changes in neuroelectric brain activity: 1. Robust transfer effects, 2. No Side Effects or Risk of Toxicity, 3. Minimal time and monetary investment, 4) Lasting effects, 5) No ethical issues, 6) Can be used in combination with other interventions, 7) Can be applied to any population.
3-hours of training over 5-weeks with NeuroTracker demonstrated robust effects on attention, working memory, and visual information processing speed as measured by neuropsychological tests. Corresponding changes measured by qEEG were also corroborated these intervention effects. NeuroTracker was concluded to meet the gold standard criteria in points 1, 2, 3, and 5, with some evidence to support the other points, but further research needed.
Learn the Fundamentals of NeuroTracker Science & Technology through our Academy
NeuroTracker Academy is an education platform that has been designed by NeuroTracker experts and key opinion leaders. Find access to a wealth of resources and specialized application modules that will enable users and trainers alike to gain a deeper understanding of the science and technology.
We proudly collaborate with a select group of innovative partners who share our passion for cognitive improvement. Their wide range of expertise helps apply the technology in cutting-edge ways, shaping the future of brain training. Join us to unlock your full potential!
NeuroTracker is used by thousands of people, including high profile athletes and celebrities that share the same passion for improving their brain.