NeuroTracker seamlessly integrates into different programs and adapts to the unique needs of your business.
NeuroTracker offers a ready-to-use training solution that sets up in just 10 minutes. Benefit from expert pre-made training programs for all user types and start deriving value immediately.
Each session takes just 6 minutes, making it easy to integrate into busy schedules without disrupting routines.
Easily onboard, monitor, and manage multiple users from a single dashboard—ideal for healthcare providers, educators, and performance organizations.
Significant cognitive gains can be seen in as little as 2–3 hours of distributed training—accelerating ROI and client outcomes.
Nearly anyone can train with NeuroTrackerX—regardless of age, ability, or background. It's effective for diverse populations and use cases.
Train on-site or remotely, on desktop or tablet—ideal for hybrid workforces, telehealth, or distributed teams.
Track individual and group progress with real-time analytics. Identify trends, optimize outcomes, and measure impact with data you can trust.
Our cloud-based platform is built for security and scalability across any size team or organization.
Assign custom plans based on individual goals, cognitive baselines, or professional roles—from rehabilitation to high performance.
NeuroTrackerX offers powerful cognitive training tools for both individuals and professionals. But when it comes to delivering consistent, measurable results at scale, our Business Software is in a league of its own.
Who It's for
Dashboard
Multi-User Management
NeuroTracker Training
Custom Sessions
Custom Questionnaires
Training Stats
Academy Certification
Support Resources
Advanced Options
Human 66 Brain Challenge
NeuroTracker is used by thousands of people, including high profile athletes and celebrities that share the same passion for improving their brain.
Start adding value to your services. Talk to our sales team whenever suits you!
With 15 years of independent research, NeuroTracker is a leading tool used by neuroscientists to study human performance.
Published Research Papers
Research Institutes Using NeuroTracker
Issued Patents and Patents Pending
NeuroTracker pre-post measures reveal cognitive benefits for college females engaging in a 15-day diet with added beef nutrients.
To investigate if beef and beef-related nutrient intake can explain the variance in visual cognitive performance in young females.
52 college age women performed 15 NeuroTracker sessions over 15 days with normal eating habits, as a preliminary study. Then 80 college age women were randomized in an RCT study to either a daily beef or veggie patty and consumed 1 patty/day for 30 days, and assessed with NeuroTracker.
In the preliminary study, higher iron, cholesterol, choline, arginine and B vitamins levels were all significantly associated with higher NeuroTracker scores. In the RCT study, the beef group demonstrated higher average NeuroTracker scores. The researchers suggest that increased intake of beef associated nutrients may increase visual cognitive performance in college age women.
NeuroTracker and reaction time measures reveal the effectiveness of different hydration modalities under severe physical fatigue.
To examine the effects of different rehydration strategies on cognitive performance under the effects of physical fatigue.
12 male endurance-trained runners (av. age: 23. years) were tasked with running on a treadmill at 70% of their predetermined VO2max for 1 h followed by running at 90% of VO2max until exhaustion on four separate days. On each day different hydration modalities were given (no hydration, electrolyte drink, electrolyte drink with a low dose of Sustamine, electrolyte drink with a high dose of Sustamine), drinking 250 mL every 15 min. Before and after each hour run, cognitive function (NeuroTracker) and reaction tests were administered.
Results showed that physical reaction time was faster for the low dose trial than the high dose trial. Analysis of lower body quickness indicates that performance in both the low and high dose trials were likely improved in comparison to the no hydration trial. NeuroTracker results indicated a possible greater performance for dehydration and low dose compared to only the electrolyte drink, while there was a likely greater performance in multiple object tracking for the high dose trial compared to consumption of the electrolyte drink only.
Rigorous feasibility study finding NeuroTracker to have high accessibility and adherence for at-home independent cognitive training.
To investigate the feasibility of using a remote therapeutic cognitive intervention for brain injury survivors using an at-home training program.
20 older female and male adults were assessed for cognitive health status using a self-report questionnaire and the Mini-Mental State Examination (MMSE) and deemed cognitively healthy. The at-home participants were provided with NeuroTracker training and completed 20 training sessions over 5 weeks. Participant recruitment, retention, adherence, and experience were used as markers of feasibility. Individual session scores, overall improvement, and learning rates between groups was also assessed.
The remote intervention was found to have strong feasibility overall. This was supported by high recruitment and retention, 90% participant adherence, along with ease of use of the program. Differences in screen size and 3D technology showed no differences on cognitive benefits achieved from training, with significant improvements in task performance across the program, which was also equivalent to lab-based training. The researchers concluded that NeuroTracker provides a promising at-home option for cognitive training for cognitively healthy adults and brain injury survivors.
NeuroTracker baselines have superior test–retest reliability over ImPACT across two sports seasons with collegiate athletes.
To determine timeframes required for baseline updates for NeuroTracker and ImPACT, based on long-term retest reliability.
At the start of two consecutive seasons, 30 athletes with no recent history of mTBI completed baseline assessments of NeuroTracker and ImPACT. The test–retest reliability of the results was assessed via three different statistical analyses.
The Visual Motor Speed composite score of the ImPACT was the only component of the assessment with outcomes with acceptable retest reliability. NeuroTracker baselines also met these standards. The researchers concluded that NeuroTracker has an acceptable level of test–retest reliability after one year in comparison to ImPACT.
For the first time NeuroTracker learning rates reveal the remarkably adaptability of world-class athletes' brains.
To assess the learning capacities of elite athlete populations compared to amateur athletes and nonathlete university students on a neutral cognitive training assessment (NeuroTracker).
308 participants were assessed by completing 15 distributed NeuroTracker sessions, grouped as the following: 102 professional elite athletes (NHL, EPL and Top 14 Rugby), 173 NCAA elite non-professional athletes, and 33 non-athlete university students.
The results showed a clear distinction between level of athletic performance and corresponding fundamental mental capacities for learning a demanding abstract and dynamic scene task. Elite athletes showed significantly higher initial baselines than the other groups, along with substantially superior learning rates. The elite non-professional athletes also similarly significantly higher learning rates over the non-athletes group. For the first time this evidence suggest that a defining characteristic of elite professional athletes is their perceptual-cognitive learning prowess, associated with unusually high levels of neuroplasticity, and that NeuroTracker is a sensitive tool for objectively assessing these abilities.
NeuroTracker training improves memory and other cognitive abilities for elderlies, more effectively than a memory training intervention.
To investigate if cognitive training programs can reduce expected cognitive decline associated with aging.
44 participants of 60 years or older were equally divided into an experimental (with NeuroTracker) and a comparative group (without NeuroTracker) and completed 12 training sessions per week. Both groups practiced mnemonic memory training techniques. Pre and post assessments were also conducted, including a a sociodemographic questionnaire, neuropsychological assessment and NeuroTracker pre and post baseline measures.
Both groups experienced some benefits from the memory training, however only the NeuroTracker trained group achieved transfer benefits for attention, reaction time, visual processing speed, episodic, semantic, subjective and working memory as well as aspects of social cognition. The researchers concluded that NeuroTracker with memory training contributed to significantly improved cognitive performance over memory training alone, and that more research should be conducted for elderly populations with and without cognitive deficits.
A single 6-min NeuroTracker baseline correlates to key professional soccer performance metrics over two seasons of play.
To investigate the relationship with NeuroTracker baselines and soccer player performance metrics across two professional seasons.
11 professional Greek soccer players from two major Super League football clubs completed a 6-min single NeuroTracker session baseline. Soccer-specific competition performance metrics were collected using the Wyscout analytics platform, including: team is winning/losing, actions with/without a yellow card, dribbles, through passes, forward passes, and assists.
Statistical analysis revealed NeuroTracker baseline score significantly correlated to actions when team is winning/losing, total actions without a yellow card, through passes, forward passes, and assists. The researchers suggest that such baselines could play a crucial and practical role in evaluating soccer players’ performance when under the demands of professional competition.
NeuroTracker training with elite youth soccer players leads to improvements in inhibition and visual clarity over controls, but not other measures.
To evaluate the effectiveness and transfer of an NeuroTracker training on visual and executive functions in youth elite soccer players.
29 elite youth soccer players were recruited and divided into training and control groups. Visual and executive functions were analyzed in a pre–post test design with both groups doing regular soccer training, and the trained group also completing 10 weeks of NeuroTracker training twice a week. Transfer assessments included tests with the Senaptec Sensory Station, the Trail Making Test, and the Design Fluency test.
Large differences in NeuroTracker initial baselines were found both between the groups, and within the groups. For the trained group, initial baselines were strongly correlated with improvement rates. Assessments show gains for both groups in working memory, cognitive flexibility, inhibition, metacognition, MOT, attention window and processing speed, but only measures inhibition, visual clarity showed advantages specific to the trained group. The researchers recommended studies with a dual-task training intervention and larger number of participants may be needed to reveal training effects for this population.
Performing NeuroTracker with motor-skills reveals previously undetected ACL risks across different types of collegiate athletes.
This study investigated the effects of a simulated game-situation cognitive load (NeuroTracker) on lower limb biomechanics, using a landing task relevant to straining of the Anterior cruciate ligament (ACL). ACL injuries are known to be one of the most sports common injuries, and occurrence has been linked to cognitive factors.
7 college level healthy athletes (soccer, volleyball, football) performed 16 single-leg landing trials involving a jump forward and a lateral jump to the opposing leg. These movements were measured via force plates and motion capture of the legs and pelvis using 36 markers. The NeuroTracker task was assigned randomly to half of the trials (dual-task procedure), with jumps performed during the tracking phase.
While NeuroTracking hip and/or knee kinematics measurements were significantly different for all participants. The largest change was found with knee abduction angle, known to be most associated to ACL injury. Of the 7 participants, 4 showed biomechanical changes from the added NeuroTracker task that revealed increased ACL strain associated with ACL injury. Based on the preliminary findings, the researchers hypothesize that a NeuroTracker training intervention may reduce risk on of non-contact ACL injury, and will perform a larger study with more detailed biomechanical analysis.
Learn the Fundamentals of NeuroTracker Science & Technology through our Academy
NeuroTracker Academy is an education platform that has been designed by NeuroTracker experts and key opinion leaders. Find access to a wealth of resources and specialized application modules that will enable users and trainers alike to gain a deeper understanding of the science and technology.
We proudly collaborate with a select group of innovative partners who share our passion for cognitive improvement. Their wide range of expertise helps apply the technology in cutting-edge ways, shaping the future of brain training. Join us to unlock your full potential!