To combine several tests known to assess driving fitness and propose a methodology to bring these together under a single index termed the ‘Driver’s Safety Index’.
115 licensed drivers between the ages of 18 and 86 were separated into two groups: 64 young participants (average age of 29 years), and 51 older participants (average age of 77 years). Each participant was assessed on three different experimental phases. 1. Visual tests: visual acuity test (V1), stereoscopic vision test (V2), and a binocular visual field test (V3). 2. Simulator driving tests across 3 difficulty based scenarios: highway (low), rural (medium) and city (high). 3. NeuroTracker as a visuo-cognitive test. A wide range of driving performance metrics from the simulator test were analyzed for correlations with the visual tests, age, and NeuroTracker scores.
There were limited correlations between driving performance and the visual tests. High NeuroTracker scores correlated strongly with high driving performance, and low scores with low driving performance, along with a strong relationship for crash risk. NeuroTracker scores were also a better predictor of driving performance than age. Driving abilities are strongly associated with NeuroTracker scores. These findings highlight the importance of visuo-cognitive abilities in the assessment of driving abilities. This study paves the way toward a single, common indicator of driving behaviour. The study authors recommend that NeuroTracker should be a component in the battery of tests for obtaining or renewing a driving license.
NeuroTracker is a viable tool for training cognitive functions in MS patients, with potential transfer to improve real-life functioning.
To assess the usability of NeuroTracker in patients with MS and their responsiveness to cognitive training effects. Standardized neuropyschological assessments and a driving readiness test (Useful Field of View).
16 patients with MS and 9 age-matched controls completed four 30-minute NeuroTracker training sessions.
MS patients scored lower than controls, however their scores improved at the same rate, suggesting a healthy response to training. Pre-post Neuropsychological assessments showed non-significant changes from training effects, with small to medium effect sizes. For the MS group, the driving readiness test showed a significant increase post-training. The researchers concluded that NeuroTracker can be used to train cognitive skills in patients with MS and may improve may improve real-life functioning such as driving safety.
NeuroTracker training transfers to significantly improved useful field of view, an ability strongly associated with driving skills.
To examine if NeuroTracker training transfers to useful field of view (UFOV) performance, a measure strongly associated with driving performance.
Twenty healthy young adults between the ages of 23 and 33 years were recruited and evenly assigned to either a NeuroTracker training program or active control group using a math game (2048). Both groups completed 5 hours of training distributed over 5 weeks. Both groups completed pre-post standardized assessments of UFOV.
The NeuroTracker training group exhibited significantly improved UFOV performance, whereas the active control group showed only a small, statistically nonsignificant improvement in the task. The researchers suggest that NeuroTracker and UFOV performance are likely dependent on overlapping cognitive abilities, and that these abilities can be trained and measured in young adults which could lead to improving driving safety.
A single 6-min NeuroTracker baseline is highly correlated with simulated driving crash risk and lane deviation in healthy older people.
To test the theory that driving performance is strongly associated with dynamic processing of multiple objects, by evaluating if NeuroTracker measures correlate with older driving performance in simulated scenarios.
30 experienced drivers with ages ranging from 65-85 years old were tested on one session of NeuroTracker (3D-MOT), and completed up to 3 driving scenarios on the STISIM 3.0 driving simulator. 5 unexpected events were included in the scenarios to test crash risk. The correlations between NeuroTracker speed thresholds and simulator measures (crash rate, lane deviation) were then calculated.
Highly significant correlations were found between NeuroTracker thresholds and both crash rate and lane deviation in the highway driving scenarios. Lower NeuroTracker scores were strongly associated with lane deviation during highway merging, and higher NeuroTracker scores related to participants being less likely to crash across different scenarios, and to have better overall lane maintenance skills. This study adds plausibility to the idea that a multiple object tracking test such as NeuroTracker could be a candidate for inclusion in an assessment battery for older drivers.
30 sessions of NeuroTracker training promotes safer driving skills on advanced driving simulators in both younger and older adults.
To investigate if NeuroTracker training can transfer to improved driving skills as measured by state-of-the-art driving simulators.
20 young adults and 14 older adults were divided into active and active-control groups. The active group completed 30 sessions of NeuroTracker training. Before and after training all participants were assessed using a high-fidelity driving simulator, which measured numerous aspects of driving performance.
The results of the study revealed that both young and older adults showed significant improvements in simulated driving performance following the NeuroTracker training. Specifically this included better lane keeping abilities, quicker reaction times to hazards, and enhanced overall situational awareness. The older adult group exhibited larger overall gains in driving performance. The researchers concluded that this study provides preliminary evidence that NeuroTracker training may improve driving safety, particularly through quicker detection of or reaction to dangerous events.
NeuroTracker baselines effectively predict driving safety for both younger and older adults, and experienced and inexperienced drivers.
To investigate NeuroTracker baselines could be predictive of driving performance across 3 simulated scenarios, to see if these measures could be predictive of driving risks.
115 drivers were divided into three age and experience groups: young inexperienced (18-21 years old), adult experienced (25-55 years old) and older adult (70-86 years old). Participants were tested for 2 hours across three different driving scenarios varying in mental workload (low, medium, high), using a highly sophisticated driving simulator. A total of 18 different metrics on driving behavior were evaluated and compared to NeuroTracker baseline scores.
Statistical analysis of NeuroTracker results and driving performance metric yielded significant correlations, including being predictive of driving speed, breaking speed, and reaction to dangerous events. Low NeuroTracker scores effectively predicted elevated risks of crashes. Lower NeuroTracker scores also correlated significantly with slower average driving speed for older adults, providing evidence towards the theory that driving more slowly is related to the cognitive effects of aging.