NeuroTracker seamlessly integrates into different programs and adapts to the unique needs of your business.
NeuroTracker offers a ready-to-use training solution that sets up in just 10 minutes. Benefit from expert pre-made training programs for all user types and start deriving value immediately.
Each session takes just 6 minutes, making it easy to integrate into busy schedules without disrupting routines.
Easily onboard, monitor, and manage multiple users from a single dashboard—ideal for healthcare providers, educators, and performance organizations.
Significant cognitive gains can be seen in as little as 2–3 hours of distributed training—accelerating ROI and client outcomes.
Nearly anyone can train with NeuroTrackerX—regardless of age, ability, or background. It's effective for diverse populations and use cases.
Train on-site or remotely, on desktop or tablet—ideal for hybrid workforces, telehealth, or distributed teams.
Track individual and group progress with real-time analytics. Identify trends, optimize outcomes, and measure impact with data you can trust.
Our cloud-based platform is built for security and scalability across any size team or organization.
Assign custom plans based on individual goals, cognitive baselines, or professional roles—from rehabilitation to high performance.
NeuroTrackerX offers powerful cognitive training tools for both individuals and professionals. But when it comes to delivering consistent, measurable results at scale, our Business Software is in a league of its own.
Who It's for
Dashboard
Multi-User Management
NeuroTracker Training
Custom Sessions
Custom Questionnaires
Training Stats
Academy Certification
Support Resources
Advanced Options
Human 66 Brain Challenge
NeuroTracker is used by thousands of people, including high profile athletes and celebrities that share the same passion for improving their brain.
Start adding value to your services. Talk to our sales team whenever suits you!
With 15 years of independent research, NeuroTracker is a leading tool used by neuroscientists to study human performance.
Published Research Papers
Research Institutes Using NeuroTracker
Issued Patents and Patents Pending
Scientific analysis of NeuroTracker driving research deems it to be relevant measure of driving safety in the context of renewing a license.
To combine several tests known to assess driving fitness and propose a methodology to bring these together under a single index termed the ‘Driver’s Safety Index’.
115 licensed drivers between the ages of 18 and 86 were separated into two groups: 64 young participants (average age of 29 years), and 51 older participants (average age of 77 years). Each participant was assessed on three different experimental phases. 1. Visual tests: visual acuity test (V1), stereoscopic vision test (V2), and a binocular visual field test (V3). 2. Simulator driving tests across 3 difficulty based scenarios: highway (low), rural (medium) and city (high). 3. NeuroTracker as a visuo-cognitive test. A wide range of driving performance metrics from the simulator test were analyzed for correlations with the visual tests, age, and NeuroTracker scores.
There were limited correlations between driving performance and the visual tests. High NeuroTracker scores correlated strongly with high driving performance, and low scores with low driving performance, along with a strong relationship for crash risk. NeuroTracker scores were also a better predictor of driving performance than age. Driving abilities are strongly associated with NeuroTracker scores. These findings highlight the importance of visuo-cognitive abilities in the assessment of driving abilities. This study paves the way toward a single, common indicator of driving behaviour. The study authors recommend that NeuroTracker should be a component in the battery of tests for obtaining or renewing a driving license.
Pitching velocity of youth baseball players at different ages correlates with NeuroTracker scores and other performance metrics.
To identify across ages, in younger males and females, and to compare, in younger males, the anthropometrics, athletic abilities and perceptual-cognitive skills associated with baseball pitcher's ball velocity.
Male and female athletes completed a sociodemographic questionnaire followed by anthropometric, athletic ability, perceptual-cognitive skill and pitching velocity assessments. Athletes were categorized by their age categories (11U, 13U, 15U, 18U, 21U). To evaluate the athletes' anthropometrics, height and weight, BMI, waist circumference, arms segmental length and girth were measured. Athletic abilities were assessed using athletes' grip strength, upper body power, vertical jump height, sprint, change of direction, and dynamic balance. Perceptual-cognitive skills performance was assessed with NeuroTracker, and pitching performance assessment was completed using the athletes' average fastball velocity.
In male athletes across each age category all anthropometric, athletic ability and perceptual-cognitive skill factors were associated with pitching velocity with associations, with effects being stronger the older the age category. NeuroTracker baselines has some of the strongest associations to pitching velocity and athletic abilities across age categories.
Detailed analysis of dietary intake in combination with daily NeuroTracker baselines reveals key nutrient levels for optimal perceptual-cognitive performance.
To examine the influence of nutritional intake on visual perceptual-cognitive performance, measured by NeuroTracker, in young healthy adults.
98 healthy men (38) and women (60) aged 18–33 years maintained their usual dietary intake while completing NeuroTracker 15 sessions of NeuroTracker over a 15-day period. Food logs and extensive lifestyle measures including body composition, cardiovascular health, sleep and exercise patterns, and general readiness to perform were collected for analysis.
Males consumed significantly more calories, macronutrients, cholesterol, choline, and zinc and performed significantly better on NeuroTracker than the females. Participants who consumed more than 40% of kcals from carbohydrates, less than 24% of kcals from protein, more than 2,000 μg/day lutein/zeaxanthin or more than 1.8 mg/ day of vitamin B2 performed significantly better on NeuroTracker than those who consumed less than those amounts. The researchers concluded that perceptual-cognitive performance is positively influenced by higher carbohydrate, lutein/ zeaxanthin, and vitamin B2 dietary intake, while high protein consumption had negative impacts.
A 4-session NeuroTracker training program (24-mins) improved working memory by 35% in athletes in high and low tracking sports.
To examine the role of working memory and visual attention for tracking expertise in different sports.
Two experiments were performed. In the experiment 1 (assessment-only), 31 male and female experienced athletes were divided into high-tracking and low-tracking sports, e.g. soccer vs swimming. They completed 3 assessment blocks (9 trials each) of the Jardine and Seiffert 2D MOT task, using 2, 3 and 4 targets at slow, medium and fast fixed speeds. Eye tracking behavior was recorded during the task. In experiment 2, 36 participants (similar to experiment 1) were divided into a control and active group. Pre and post training, both groups completed the same 2D MOT assessment with eye tracking, as well as 2 types of n-back working memory assessments (combined visual and auditory demands). The active group completed a training intervention of 4 NeuroTracker sessions (20 trials each), using adaptive speed adjustments, whereas the controls did not.
In Experiment 1, analysis of eye tracking data revealed that directing gaze towards the center of the screen was a beneficial strategy for achieving higher tracking performance. High tracking sports showed superior tracking performance overall. In experiment 2, the active group experienced a large improvement in both NeuroTracker scores and working memory performance post-training, including a 35% increase WM accuracy. Training also transferred to significantly improved performance on the 2D MOT assessment. Controls showed no significant changes in pre-post assessments.
To investigate the ‘selfish brain hypothesis’, which suggests the brain prioritizes its own glucose needs over those of the peripheral organs such as skeletal muscle, using individual and dual-task assessments with NeuroTracker and exercise on a cycle ergometer.
32 participants were randomly assigned to a no priority, cognitive priority (focus on NeuroTracker task), or physical priority (focus on physical task) group. NeuroTracker and a cycle ergometer were used to measure cognition and physical performance, respectively. Participants completed 5 assessments: 2 cognitive, 1 predicted VO2 max, and 1 dual task. During the dual task participants completed 3 NeuroTracker sessions, while cycling on a cycle ergometer. The cycle ergometer was modified to remove demands on balance, isolating aerobic demands.
Results revealed that the physical priority group had significantly higher cycle ergometer performance compared to the cognitive priority group. However, overall physical performance remained relatively stable throughout the physical and dual task assessments. All groups experienced improvements in their visual tracking speed scores as they progressed through the study. No evidence was found to support the selfish brain hypothesis during dual task performance, in contrast results may indicate an arousal effect from physical exercise, heightening NeuroTracker performance compared to single task performance.
A short NeuroTracker training intervention significantly improves fine motor-skills in elderly adults diagnosed with cognitive impairments.
To investigate if older populations with clinically diagnosed cognitive impairments associated with fine-motor skills difficulties could measurably benefit from a short cognitive training intervention.
38 elderly participants, half with mild cognitive impairment (MCI) and half with mild dementia (MD) completed a total of 36 sessions of NeuroTracker training. The Montreal Cognitive Assessment (MoCA) test was used to assess the baseline cognitive status, and two batteries of manual motor skills assessments completed before and after the training program.
The results showed clear and significant post-training improvements in both manual dexterity tests. Analysis indicated that only 90-minutes of NeuroTracker training was needed to achieve these benefits with these populations. The researchers concluded that this type of intervention could have a broad impact on the aging population in terms of their daily quality of life.
To examine the effects of 14-days ATP supplementation (adenosine 5′-triphosphate) on NeuroTracker visual tracking speed, reaction time, mood and cognition in a double-blind crossover study.
22 adults were randomized to either an active PeakATP® group or a placebo control group and supplemented for 14-days. They then tested on 3 minutes of maximum intensity cycling. Pre, immediately post, and 60-minutes post, all participants completed a NeuroTracker baseline, a visuomotor reaction test (Dynavision D2), a Profile of Mood States Questionnaire and a cognition assessment (ANAM). After another 14 days of no supplementation, the active and control groups were then reversed and the whole procedure was repeated.
NeuroTracker results improved on the second testing procedure, however average differences between active and control groups were negligible. No significant interactions were found on the other assessments, apart from reaction time performance, which improved meaningfully with post ATP supplementation. The results suggest ATP may help decrease fatigue related effects from intense bouts of exercise, but not higher-level cognitive functions.
NeuroTracker learning rates between collegiate male and female athletes and non-athlete peers reveals the cognitive neurodevelopmental benefits of sports.
To investigate playing sports influences cognitive capacities measured by NeuroTracker, as well as to see if such effects differs between young males and females.
72 individuals aged 16 to 22 were split into 4 groups: male athletes, female athletes, male non-athletes and female non-athletes. All groups performed 15 sessions of NeuroTracker (approximately 90-mins) over 5 weeks.
All groups showed significant improvements across the NeuroTracker training. Initially, male athletes demonstrated higher performance compared to their female counterparts and non-athletes. The female athletes also maintained consistently higher scores than male non-athletes, as did male athletes over other groups. Overall, a clear cognitive advantage was associated with engaging in sports.
NeuroTracker pre-post measures reveal cognitive benefits for college females engaging in a 15-day diet with added beef nutrients.
To investigate if beef and beef-related nutrient intake can explain the variance in visual cognitive performance in young females.
52 college age women performed 15 NeuroTracker sessions over 15 days with normal eating habits, as a preliminary study. Then 80 college age women were randomized in an RCT study to either a daily beef or veggie patty and consumed 1 patty/day for 30 days, and assessed with NeuroTracker.
In the preliminary study, higher iron, cholesterol, choline, arginine and B vitamins levels were all significantly associated with higher NeuroTracker scores. In the RCT study, the beef group demonstrated higher average NeuroTracker scores. The researchers suggest that increased intake of beef associated nutrients may increase visual cognitive performance in college age women.
Learn the Fundamentals of NeuroTracker Science & Technology through our Academy
NeuroTracker Academy is an education platform that has been designed by NeuroTracker experts and key opinion leaders. Find access to a wealth of resources and specialized application modules that will enable users and trainers alike to gain a deeper understanding of the science and technology.
We proudly collaborate with a select group of innovative partners who share our passion for cognitive improvement. Their wide range of expertise helps apply the technology in cutting-edge ways, shaping the future of brain training. Join us to unlock your full potential!