Watch this video to understand why NeuroTracker is used by many people in all different industries.
From ADHD to special forces and athletes to elderly. NeuroTracker is being used to improve humans everywhere
NeuroTracker seamlessly integrates into different programs and adapts to the unique needs of your business.
NeuroTracker offers a ready-to-use training solution that sets up in just 10 minutes. Benefit from expert pre-made training programs for all user types and start deriving value immediately.
Each session takes just 6 minutes, making it easy to integrate into busy schedules without disrupting routines.
Easily onboard, monitor, and manage multiple users from a single dashboard—ideal for healthcare providers, educators, and performance organizations.
Significant cognitive gains can be seen in as little as 2–3 hours of distributed training—accelerating ROI and client outcomes.
Nearly anyone can train with NeuroTrackerX—regardless of age, ability, or background. It's effective for diverse populations and use cases.
Train on-site or remotely, on desktop or tablet—ideal for hybrid workforces, telehealth, or distributed teams.
Track individual and group progress with real-time analytics. Identify trends, optimize outcomes, and measure impact with data you can trust.
Our cloud-based platform is built for security and scalability across any size team or organization.
Assign custom plans based on individual goals, cognitive baselines, or professional roles—from rehabilitation to high performance.
Gain in Concentration Ability and Sustained Attention
Increase in Perception Speed
Reduction in the Effects of Cognitive Fatigue
Start adding value to your services. Talk to our sales team whenever suits you!
With 15 years of independent research, NeuroTracker is a leading tool used by neuroscientists to study human performance.
Published Research Papers
Research Institutes Using NeuroTracker
Issued Patents and Patents Pending
NeuroTracker meets gold standard criteria as a cognitive enhancement tool, corroborated with positive pre-post changes in qEEG measures.
To examine the practical efficacy of cognitive enhancement interventions through a gold-standard template for assessing use of such tools, and to assess NeuroTracker evidence against the template for enhancing attention, working memory and visual information processing speed.
To assess cognitive tools and NeuroTracker specifically against the following gold-standard criteria and with qEEG findings on changes in neuroelectric brain activity: 1. Robust transfer effects, 2. No Side Effects or Risk of Toxicity, 3. Minimal time and monetary investment, 4) Lasting effects, 5) No ethical issues, 6) Can be used in combination with other interventions, 7) Can be applied to any population.
3-hours of training over 5-weeks with NeuroTracker demonstrated robust effects on attention, working memory, and visual information processing speed as measured by neuropsychological tests. Corresponding changes measured by qEEG were also corroborated these intervention effects. NeuroTracker was concluded to meet the gold standard criteria in points 1, 2, 3, and 5, with some evidence to support the other points, but further research needed.
Several studies have shown that aerobic exercise can slow age-related cognitive decline, and in some cases, improve cognitive function in the older population. The purpose of this study was to investigate for the first time, the effects of resistance training on cognitive function, as measured by changes in NeuroTracker measures.
25 older adults with a mean age of 70yrs were split into a trained group (6 weeks of resistance exercises), and an untrained group. Perceptual-cognitive ability was measured pre and post training using NeuroTracker baselines.
The older adults who performed six weeks of resistance training experienced significant improvements in perceptual-cognitive function as measured by NeuroTracker. Resistance training may therefore be an effective means to slow age related cognitive decline.
Prior consolidation with NeuroTracker isolated training improves learning rates for NeuroTracker decision-making and motor-skill dual-task training.
To investigate the effects of motor and perceptual dual-task NeuroTracker training over time, and in particular to see if performing prior NeuroTracker consolidation training significantly influences these effects.
71 participants were assigned either just NeuroTracker training (iMOT), NeuroTracker with a decisionmaking task (Combi), NeuroTracker consolidation training then with a decision-making task (Consol), or an isolated decision-making task (iDM). The decision-making task involved a motor-response reaction to a simulated birdie with a real badminton racket. Performance was measured through NeuroTracker speed threshold, decision accuracy, and reaction time.
Firstly the results demonstrated that the dual-task component significantly affects NeuroTracker speed thresholds. Secondly that this effect is reduced with training over time. Thirdly that this effect is reduced further when consolidation training on just NeuroTracker is completed beforehand. Additionally, decision-making speed, reaction time and accuracy improved with dual-task training. Overall this study provides evidence that NeuroTracker consolidation training is an effective method for accelerating learning rates across multiple performance domains.
NeuroTracker measures of spare cognitive capacity reveal for the first time the different mental demands of live versus simulated jet piloting.
The goal of this multi-year research project was to develop methods for assessing the efficacy of training (including live and simulated platforms) by validating measures of cognitive workload that characterize skill acquisition.
10 evaluation pilots (100-300 flight hours of experience) were selected to perform low, medium and high difficulty flight manoeuvres in both a jet flight simulator and live jet flight (Aero Vodochody L-29 jet trainer) using experimental conditions. During flight ECG data (NeXus-4) and eye-tracking data (Dikablis) was collected. Flight performance was analysed for altitude, roll, and vertical speed errors, and cognitive workload was subjectively assessed (10-point Bedford Workload Scale). As a validated tool for evaluating perceptual-cognitive skills, NeuroTracker was selected as to measure spare cognitive capacity via extraneous load (Cognitive Load Theory). All pilots first completed home-based NeuroTracker consolidation training (15 Core sessions). NeuroTracker was integrated into the flight testbed. Low, medium and high difficulty flight manoeuvre tests were performed by all pilots, both without NeuroTracker, and while simultaneously performing NeuroTracker Core sessions.
Compared to performing NeuroTracker alone, live and simulated flight across all manoeuvres, caused a drastic decrease in NeuroTracker speed thresholds (average of ~97%). This, perhaps for the first time, objectively demonstrated that jet flight involves very high intrinsic cognitive loads. Live flight resulted in lower NeuroTracker speed thresholds and physiological performance than simulated flight, with greater differences for higher difficulty maneuverers. This evidence suggests that physiological and cognitive loads are significantly heavier in live flight, supporting the theory that that brain dynamics differ in real-world environments compared to those of a laboratory.
NeuroTracker training improves memory and other cognitive abilities for elderlies, more effectively than a memory training intervention.
To investigate if cognitive training programs can reduce expected cognitive decline associated with aging.
44 participants of 60 years or older were equally divided into an experimental (with NeuroTracker) and a comparative group (without NeuroTracker) and completed 12 training sessions per week. Both groups practiced mnemonic memory training techniques. Pre and post assessments were also conducted, including a a sociodemographic questionnaire, neuropsychological assessment and NeuroTracker pre and post baseline measures.
Both groups experienced some benefits from the memory training, however only the NeuroTracker trained group achieved transfer benefits for attention, reaction time, visual processing speed, episodic, semantic, subjective and working memory as well as aspects of social cognition. The researchers concluded that NeuroTracker with memory training contributed to significantly improved cognitive performance over memory training alone, and that more research should be conducted for elderly populations with and without cognitive deficits.
A single 6-min NeuroTracker baseline is highly correlated with simulated driving crash risk and lane deviation in healthy older people.
To test the theory that driving performance is strongly associated with dynamic processing of multiple objects, by evaluating if NeuroTracker measures correlate with older driving performance in simulated scenarios.
30 experienced drivers with ages ranging from 65-85 years old were tested on one session of NeuroTracker (3D-MOT), and completed up to 3 driving scenarios on the STISIM 3.0 driving simulator. 5 unexpected events were included in the scenarios to test crash risk. The correlations between NeuroTracker speed thresholds and simulator measures (crash rate, lane deviation) were then calculated.
Highly significant correlations were found between NeuroTracker thresholds and both crash rate and lane deviation in the highway driving scenarios. Lower NeuroTracker scores were strongly associated with lane deviation during highway merging, and higher NeuroTracker scores related to participants being less likely to crash across different scenarios, and to have better overall lane maintenance skills. This study adds plausibility to the idea that a multiple object tracking test such as NeuroTracker could be a candidate for inclusion in an assessment battery for older drivers.
A single 6-min NeuroTracker assessment correlates with key NBA competition performance metrics across a season of play.
The purpose of this study was to determine the relationship between visual tracking speed (NeuroTracker) and reaction time on basketball specific measures of performance.
12 professional NBA basketball players (Orlando Magic) were tested with a 1-session NeuroTracker baseline (6-mins), reaction time assessment, and the were results compared to competitive performance metric across an NBA season. Competition data analysis focused on Assists, Turnovers, Assist-to-turnover ratio, and Steals.
Finding show that relationships between NeuroTracker baselines were most strongly correlatedwith Assist-to-turnover ratio, and Turnovers. Backcourt players were more likely to outperform frontcourt players in AST and accordingly very likely to achieve higher NeuroTracker performance. Reaction time was not related to any of the basketball-specific performance measures. Overall a single NeuroTracker session baselines showed significant correlation to the NBA players’ ability to see and respond to various stimuli on the basketball court in ways that resulted in better performance.
60 minutes of NeuroTracker training transfers to significant improvements in passing accuracy in NCAA Division 1 soccer players.
The purpose of this study was to investigate the relationship between the effects of 4-weeks of NeuroTracker training on in-game soccer performance measures.
13 NCAA Division I soccer players were split into trained and control groups. Both groups completed a NeuroTracker baseline. The trained group then completed 10 NeuroTracker training sessions (60 minutes) over a 4-week period. Soccer performance metrics were obtained from WyScout where 2 game averages were examined to compare pre-post-NT performance.
Data analysis revealed a moderate improvement of the trained group over the control group in passing accuracy, a 8.5% increase post-training, versus a 3.5% increase. Small non-significant improvements were also observed for successful actions and short+medium passes for the NeuroTracker trained group.
NeuroTracker baselines are significantly related to some test components of standardized concussion assessment tools, but not others.
To determine the extent to which aspects of the Sport Concussion Assessment Tool 3 (SCAT3) or Child SCAT3 (C-SCAT3), and the King-Devick Test (KDT) predict NeuroTracker baselines.
304 healthy, non-concussed participants with a sporting history (101 females, 203 males) ranging in age from 7-29 years were included in the analysis. Participants completed the SCAT3, KDT and NeuroTracker assessments in a single visit.
A regression analysis revealed that KDT, the delayed recall and coordination subcomponent results of the SCAT 3 explained a significant amount of the variance in NeuroTracker baseline scores, but large variability was found with the other test components. The researchers concluded that NeuroTracker baselines likely account for central cognitive functions above and beyond the SCAT3 or C-SCAT3 and KDT.
Learn the Fundamentals of NeuroTracker Science & Technology through our Academy
NeuroTracker Academy is an education platform that has been designed by NeuroTracker experts and key opinion leaders. Find access to a wealth of resources and specialized application modules that will enable users and trainers alike to gain a deeper understanding of the science and technology.
We proudly collaborate with a select group of innovative partners who share our passion for cognitive improvement. Their wide range of expertise helps apply the technology in cutting-edge ways, shaping the future of brain training. Join us to unlock your full potential!
NeuroTracker is used by thousands of people, including high profile athletes and celebrities that share the same passion for improving their brain.